Linear Algebra Examples
S([abc])=[a-6b-3ca-2b+ca+3b+5c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−6b−3ca−2b+ca+3b+5c⎤⎥⎦
Step 1
The kernel of a transformation is a vector that makes the transformation equal to the zero vector (the pre-image of the transformation).
[a-6b-3ca-2b+ca+3b+5c]=0⎡⎢⎣a−6b−3ca−2b+ca+3b+5c⎤⎥⎦=0
Step 2
Create a system of equations from the vector equation.
a-6b-3c=0a−6b−3c=0
a-2b+c=0a−2b+c=0
a+3b+5c=0a+3b+5c=0
Step 3
Write the system as a matrix.
[1-6-301-2101350]⎡⎢
⎢⎣1−6−301−2101350⎤⎥
⎥⎦
Step 4
Step 4.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Step 4.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1-6-301-1-2+61+30-01350]⎡⎢
⎢⎣1−6−301−1−2+61+30−01350⎤⎥
⎥⎦
Step 4.1.2
Simplify R2R2.
[1-6-3004401350]⎡⎢
⎢⎣1−6−3004401350⎤⎥
⎥⎦
[1-6-3004401350]⎡⎢
⎢⎣1−6−3004401350⎤⎥
⎥⎦
Step 4.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Step 4.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1-6-3004401-13+65+30-0]⎡⎢
⎢⎣1−6−3004401−13+65+30−0⎤⎥
⎥⎦
Step 4.2.2
Simplify R3R3.
[1-6-3004400980]⎡⎢
⎢⎣1−6−3004400980⎤⎥
⎥⎦
[1-6-3004400980]⎡⎢
⎢⎣1−6−3004400980⎤⎥
⎥⎦
Step 4.3
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
Step 4.3.1
Multiply each element of R2R2 by 1414 to make the entry at 2,22,2 a 11.
[1-6-30044444040980]⎡⎢
⎢⎣1−6−30044444040980⎤⎥
⎥⎦
Step 4.3.2
Simplify R2R2.
[1-6-3001100980]⎡⎢
⎢⎣1−6−3001100980⎤⎥
⎥⎦
[1-6-3001100980]⎡⎢
⎢⎣1−6−3001100980⎤⎥
⎥⎦
Step 4.4
Perform the row operation R3=R3-9R2R3=R3−9R2 to make the entry at 3,23,2 a 00.
Step 4.4.1
Perform the row operation R3=R3-9R2R3=R3−9R2 to make the entry at 3,23,2 a 00.
[1-6-3001100-9⋅09-9⋅18-9⋅10-9⋅0]⎡⎢
⎢⎣1−6−3001100−9⋅09−9⋅18−9⋅10−9⋅0⎤⎥
⎥⎦
Step 4.4.2
Simplify R3R3.
[1-6-30011000-10]⎡⎢
⎢⎣1−6−30011000−10⎤⎥
⎥⎦
[1-6-30011000-10]⎡⎢
⎢⎣1−6−30011000−10⎤⎥
⎥⎦
Step 4.5
Multiply each element of R3R3 by -1−1 to make the entry at 3,33,3 a 11.
Step 4.5.1
Multiply each element of R3R3 by -1−1 to make the entry at 3,33,3 a 11.
[1-6-300110-0-0--1-0]⎡⎢
⎢⎣1−6−300110−0−0−−1−0⎤⎥
⎥⎦
Step 4.5.2
Simplify R3R3.
[1-6-3001100010]⎡⎢
⎢⎣1−6−3001100010⎤⎥
⎥⎦
[1-6-3001100010]⎡⎢
⎢⎣1−6−3001100010⎤⎥
⎥⎦
Step 4.6
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
Step 4.6.1
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
[1-6-300-01-01-10-00010]⎡⎢
⎢⎣1−6−300−01−01−10−00010⎤⎥
⎥⎦
Step 4.6.2
Simplify R2R2.
[1-6-3001000010]⎡⎢
⎢⎣1−6−3001000010⎤⎥
⎥⎦
[1-6-3001000010]⎡⎢
⎢⎣1−6−3001000010⎤⎥
⎥⎦
Step 4.7
Perform the row operation R1=R1+3R3R1=R1+3R3 to make the entry at 1,31,3 a 00.
Step 4.7.1
Perform the row operation R1=R1+3R3R1=R1+3R3 to make the entry at 1,31,3 a 00.
[1+3⋅0-6+3⋅0-3+3⋅10+3⋅001000010]⎡⎢
⎢⎣1+3⋅0−6+3⋅0−3+3⋅10+3⋅001000010⎤⎥
⎥⎦
Step 4.7.2
Simplify R1R1.
[1-60001000010]⎡⎢
⎢⎣1−60001000010⎤⎥
⎥⎦
[1-60001000010]⎡⎢
⎢⎣1−60001000010⎤⎥
⎥⎦
Step 4.8
Perform the row operation R1=R1+6R2R1=R1+6R2 to make the entry at 1,21,2 a 00.
Step 4.8.1
Perform the row operation R1=R1+6R2R1=R1+6R2 to make the entry at 1,21,2 a 00.
[1+6⋅0-6+6⋅10+6⋅00+6⋅001000010]⎡⎢
⎢⎣1+6⋅0−6+6⋅10+6⋅00+6⋅001000010⎤⎥
⎥⎦
Step 4.8.2
Simplify R1R1.
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
[100001000010]⎡⎢
⎢⎣100001000010⎤⎥
⎥⎦
Step 5
Use the result matrix to declare the final solution to the system of equations.
a=0a=0
b=0b=0
c=0c=0
Step 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[000]⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣000⎤⎥⎦
Step 7
Write as a solution set.
{[000]}⎧⎪⎨⎪⎩⎡⎢⎣000⎤⎥⎦⎫⎪⎬⎪⎭
Step 8
The kernel of S is the subspace {[000]}.
K(S)={[000]}