Linear Algebra Examples
B={[-147],[6-58],[159]}B=⎧⎪⎨⎪⎩⎡⎢⎣−147⎤⎥⎦,⎡⎢⎣6−58⎤⎥⎦,⎡⎢⎣159⎤⎥⎦⎫⎪⎬⎪⎭
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation Ax=0Ax=0 has any non-trivial solutions.
Step 2
Write as an augmented matrix for Ax=0Ax=0.
[-16104-5507890]⎡⎢
⎢⎣−16104−5507890⎤⎥
⎥⎦
Step 3
Step 3.1
Multiply each element of R1R1 by -1−1 to make the entry at 1,11,1 a 11.
Step 3.1.1
Multiply each element of R1R1 by -1−1 to make the entry at 1,11,1 a 11.
[--1-1⋅6-1⋅1-04-5507890]⎡⎢
⎢⎣−−1−1⋅6−1⋅1−04−5507890⎤⎥
⎥⎦
Step 3.1.2
Simplify R1R1.
[1-6-104-5507890]⎡⎢
⎢⎣1−6−104−5507890⎤⎥
⎥⎦
[1-6-104-5507890]⎡⎢
⎢⎣1−6−104−5507890⎤⎥
⎥⎦
Step 3.2
Perform the row operation R2=R2-4R1R2=R2−4R1 to make the entry at 2,12,1 a 00.
Step 3.2.1
Perform the row operation R2=R2-4R1R2=R2−4R1 to make the entry at 2,12,1 a 00.
[1-6-104-4⋅1-5-4⋅-65-4⋅-10-4⋅07890]⎡⎢
⎢⎣1−6−104−4⋅1−5−4⋅−65−4⋅−10−4⋅07890⎤⎥
⎥⎦
Step 3.2.2
Simplify R2R2.
[1-6-10019907890]⎡⎢
⎢⎣1−6−10019907890⎤⎥
⎥⎦
[1-6-10019907890]⎡⎢
⎢⎣1−6−10019907890⎤⎥
⎥⎦
Step 3.3
Perform the row operation R3=R3-7R1R3=R3−7R1 to make the entry at 3,13,1 a 00.
Step 3.3.1
Perform the row operation R3=R3-7R1R3=R3−7R1 to make the entry at 3,13,1 a 00.
[1-6-10019907-7⋅18-7⋅-69-7⋅-10-7⋅0]⎡⎢
⎢⎣1−6−10019907−7⋅18−7⋅−69−7⋅−10−7⋅0⎤⎥
⎥⎦
Step 3.3.2
Simplify R3R3.
[1-6-1001990050160]⎡⎢
⎢⎣1−6−1001990050160⎤⎥
⎥⎦
[1-6-1001990050160]⎡⎢
⎢⎣1−6−1001990050160⎤⎥
⎥⎦
Step 3.4
Multiply each element of R2R2 by 119119 to make the entry at 2,22,2 a 11.
Step 3.4.1
Multiply each element of R2R2 by 119119 to make the entry at 2,22,2 a 11.
[1-6-100191919919019050160]⎡⎢
⎢⎣1−6−100191919919019050160⎤⎥
⎥⎦
Step 3.4.2
Simplify R2R2.
[1-6-10019190050160]⎡⎢
⎢⎣1−6−10019190050160⎤⎥
⎥⎦
[1-6-10019190050160]⎡⎢
⎢⎣1−6−10019190050160⎤⎥
⎥⎦
Step 3.5
Perform the row operation R3=R3-50R2R3=R3−50R2 to make the entry at 3,23,2 a 00.
Step 3.5.1
Perform the row operation R3=R3-50R2R3=R3−50R2 to make the entry at 3,23,2 a 00.
[1-6-100191900-50⋅050-50⋅116-50(919)0-50⋅0]⎡⎢
⎢
⎢
⎢⎣1−6−100191900−50⋅050−50⋅116−50(919)0−50⋅0⎤⎥
⎥
⎥
⎥⎦
Step 3.5.2
Simplify R3R3.
[1-6-1001919000-146190]⎡⎢
⎢
⎢⎣1−6−1001919000−146190⎤⎥
⎥
⎥⎦
[1-6-1001919000-146190]⎡⎢
⎢
⎢⎣1−6−1001919000−146190⎤⎥
⎥
⎥⎦
Step 3.6
Multiply each element of R3R3 by -19146−19146 to make the entry at 3,33,3 a 11.
Step 3.6.1
Multiply each element of R3R3 by -19146−19146 to make the entry at 3,33,3 a 11.
[1-6-10019190-19146⋅0-19146⋅0-19146(-14619)-19146⋅0]⎡⎢
⎢
⎢
⎢⎣1−6−10019190−19146⋅0−19146⋅0−19146(−14619)−19146⋅0⎤⎥
⎥
⎥
⎥⎦
Step 3.6.2
Simplify R3R3.
[1-6-100191900010]⎡⎢
⎢⎣1−6−100191900010⎤⎥
⎥⎦
[1-6-100191900010]⎡⎢
⎢⎣1−6−100191900010⎤⎥
⎥⎦
Step 3.7
Perform the row operation R2=R2-919R3R2=R2−919R3 to make the entry at 2,32,3 a 00.
Step 3.7.1
Perform the row operation R2=R2-919R3R2=R2−919R3 to make the entry at 2,32,3 a 00.
[1-6-100-919⋅01-919⋅0919-919⋅10-919⋅00010]⎡⎢
⎢⎣1−6−100−919⋅01−919⋅0919−919⋅10−919⋅00010⎤⎥
⎥⎦
Step 3.7.2
Simplify R2R2.
[1-6-1001000010]⎡⎢
⎢⎣1−6−1001000010⎤⎥
⎥⎦
[1-6-1001000010]⎡⎢
⎢⎣1−6−1001000010⎤⎥
⎥⎦
Step 3.8
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
Step 3.8.1
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
[1+0-6+0-1+1⋅10+001000010]⎡⎢
⎢⎣1+0−6+0−1+1⋅10+001000010⎤⎥
⎥⎦
Step 3.8.2
Simplify R1R1.
[1-60001000010]⎡⎢
⎢⎣1−60001000010⎤⎥
⎥⎦
[1-60001000010]⎡⎢
⎢⎣1−60001000010⎤⎥
⎥⎦
Step 3.9
Perform the row operation R1=R1+6R2 to make the entry at 1,2 a 0.
Step 3.9.1
Perform the row operation R1=R1+6R2 to make the entry at 1,2 a 0.
[1+6⋅0-6+6⋅10+6⋅00+6⋅001000010]
Step 3.9.2
Simplify R1.
[100001000010]
[100001000010]
[100001000010]
Step 4
Write the matrix as a system of linear equations.
x=0
y=0
z=0
Step 5
Since the only solution to Ax=0 is the trivial solution, the vectors are linearly independent.
Linearly Independent