Linear Algebra Examples

143112101
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(AλI3)
Step 2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
100010001
Step 3
Substitute the known values into p(λ)=determinant(AλI3).
Tap for more steps...
Step 3.1
Substitute 143112101 for A.
p(λ)=determinant143112101λI3
Step 3.2
Substitute 100010001 for I3.
p(λ)=determinant143112101λ100010001
p(λ)=determinant143112101λ100010001
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply λ by each element of the matrix.
p(λ)=determinant143112101+λ1λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply 1 by 1.
p(λ)=determinant143112101+λλ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2
Multiply λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ0λλ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ0λ0λ0λ1λ0λ0λ0λ1
p(λ)=determinant143112101+λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.3
Multiply λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ00λλ0λ1λ0λ0λ0λ1
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ00λ0λ1λ0λ0λ0λ1
p(λ)=determinant143112101+λ00λ0λ1λ0λ0λ0λ1
Step 4.1.2.4
Multiply λ0.
Tap for more steps...
Step 4.1.2.4.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ000λλ1λ0λ0λ0λ1
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ000λ1λ0λ0λ0λ1
p(λ)=determinant143112101+λ000λ1λ0λ0λ0λ1
Step 4.1.2.5
Multiply 1 by 1.
p(λ)=determinant143112101+λ000λλ0λ0λ0λ1
Step 4.1.2.6
Multiply λ0.
Tap for more steps...
Step 4.1.2.6.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ000λ0λλ0λ0λ1
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ000λ0λ0λ0λ1
p(λ)=determinant143112101+λ000λ0λ0λ0λ1
Step 4.1.2.7
Multiply λ0.
Tap for more steps...
Step 4.1.2.7.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ000λ00λλ0λ1
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ000λ00λ0λ1
p(λ)=determinant143112101+λ000λ00λ0λ1
Step 4.1.2.8
Multiply λ0.
Tap for more steps...
Step 4.1.2.8.1
Multiply 0 by 1.
p(λ)=determinant143112101+λ000λ000λλ1
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant143112101+λ000λ000λ1
p(λ)=determinant143112101+λ000λ000λ1
Step 4.1.2.9
Multiply 1 by 1.
p(λ)=determinant143112101+λ000λ000λ
p(λ)=determinant143112101+λ000λ000λ
p(λ)=determinant143112101+λ000λ000λ
Step 4.2
Add the corresponding elements.
p(λ)=determinant1λ4+03+01+01λ2+01+00+01λ
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 4 and 0.
p(λ)=determinant1λ43+01+01λ2+01+00+01λ
Step 4.3.2
Add 3 and 0.
p(λ)=determinant1λ431+01λ2+01+00+01λ
Step 4.3.3
Add 1 and 0.
p(λ)=determinant1λ4311λ2+01+00+01λ
Step 4.3.4
Add 2 and 0.
p(λ)=determinant1λ4311λ21+00+01λ
Step 4.3.5
Add 1 and 0.
p(λ)=determinant1λ4311λ210+01λ
Step 4.3.6
Add 0 and 0.
p(λ)=determinant1λ4311λ2101λ
p(λ)=determinant1λ4311λ2101λ
p(λ)=determinant1λ4311λ2101λ
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
∣ ∣+++++∣ ∣
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
1211λ
Step 5.1.4
Multiply element a12 by its cofactor.
41211λ
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
1λ311λ
Step 5.1.6
Multiply element a22 by its cofactor.
(1λ)1λ311λ
Step 5.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
1λ312
Step 5.1.8
Multiply element a32 by its cofactor.
01λ312
Step 5.1.9
Add the terms together.
p(λ)=41211λ+(1λ)1λ311λ+01λ312
p(λ)=41211λ+(1λ)1λ311λ+01λ312
Step 5.2
Multiply 0 by 1λ312.
p(λ)=41211λ+(1λ)1λ311λ+0
Step 5.3
Evaluate 1211λ.
Tap for more steps...
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
p(λ)=4(1(1λ)(12))+(1λ)1λ311λ+0
Step 5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.1
Multiply 1λ by 1.
p(λ)=4(1λ(12))+(1λ)1λ311λ+0
Step 5.3.2.1.2
Multiply (12).
Tap for more steps...
Step 5.3.2.1.2.1
Multiply 1 by 2.
p(λ)=4(1λ2)+(1λ)1λ311λ+0
Step 5.3.2.1.2.2
Multiply 1 by 2.
p(λ)=4(1λ+2)+(1λ)1λ311λ+0
p(λ)=4(1λ+2)+(1λ)1λ311λ+0
p(λ)=4(1λ+2)+(1λ)1λ311λ+0
Step 5.3.2.2
Add 1 and 2.
p(λ)=4(λ+1)+(1λ)1λ311λ+0
p(λ)=4(λ+1)+(1λ)1λ311λ+0
p(λ)=4(λ+1)+(1λ)1λ311λ+0
Step 5.4
Evaluate 1λ311λ.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula abcd=adcb.
p(λ)=4(λ+1)+(1λ)((1λ)(1λ)(13))+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Expand (1λ)(1λ) using the FOIL Method.
Tap for more steps...
Step 5.4.2.1.1.1
Apply the distributive property.
p(λ)=4(λ+1)+(1λ)(1(1λ)λ(1λ)(13))+0
Step 5.4.2.1.1.2
Apply the distributive property.
p(λ)=4(λ+1)+(1λ)(111(λ)λ(1λ)(13))+0
Step 5.4.2.1.1.3
Apply the distributive property.
p(λ)=4(λ+1)+(1λ)(111(λ)λ1λ(λ)(13))+0
p(λ)=4(λ+1)+(1λ)(111(λ)λ1λ(λ)(13))+0
Step 5.4.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.4.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.2.1.1
Multiply 1 by 1.
p(λ)=4(λ+1)+(1λ)(11(λ)λ1λ(λ)(13))+0
Step 5.4.2.1.2.1.2
Multiply 1(λ).
Tap for more steps...
Step 5.4.2.1.2.1.2.1
Multiply 1 by 1.
p(λ)=4(λ+1)+(1λ)(1+1λλ1λ(λ)(13))+0
Step 5.4.2.1.2.1.2.2
Multiply λ by 1.
p(λ)=4(λ+1)+(1λ)(1+λλ1λ(λ)(13))+0
p(λ)=4(λ+1)+(1λ)(1+λλ1λ(λ)(13))+0
Step 5.4.2.1.2.1.3
Multiply λ1.
Tap for more steps...
Step 5.4.2.1.2.1.3.1
Multiply 1 by 1.
p(λ)=4(λ+1)+(1λ)(1+λ+1λλ(λ)(13))+0
Step 5.4.2.1.2.1.3.2
Multiply λ by 1.
p(λ)=4(λ+1)+(1λ)(1+λ+λλ(λ)(13))+0
p(λ)=4(λ+1)+(1λ)(1+λ+λλ(λ)(13))+0
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4(λ+1)+(1λ)(1+λ+λ11λλ(13))+0
Step 5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.4.2.1.2.1.5.1
Move λ.
p(λ)=4(λ+1)+(1λ)(1+λ+λ11(λλ)(13))+0
Step 5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4(λ+1)+(1λ)(1+λ+λ11λ2(13))+0
p(λ)=4(λ+1)+(1λ)(1+λ+λ11λ2(13))+0
Step 5.4.2.1.2.1.6
Multiply 1 by 1.
p(λ)=4(λ+1)+(1λ)(1+λ+λ+1λ2(13))+0
Step 5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4(λ+1)+(1λ)(1+λ+λ+λ2(13))+0
p(λ)=4(λ+1)+(1λ)(1+λ+λ+λ2(13))+0
Step 5.4.2.1.2.2
Add λ and λ.
p(λ)=4(λ+1)+(1λ)(1+2λ+λ2(13))+0
p(λ)=4(λ+1)+(1λ)(1+2λ+λ2(13))+0
Step 5.4.2.1.3
Multiply (13).
Tap for more steps...
Step 5.4.2.1.3.1
Multiply 1 by 3.
p(λ)=4(λ+1)+(1λ)(1+2λ+λ23)+0
Step 5.4.2.1.3.2
Multiply 1 by 3.
p(λ)=4(λ+1)+(1λ)(1+2λ+λ2+3)+0
p(λ)=4(λ+1)+(1λ)(1+2λ+λ2+3)+0
p(λ)=4(λ+1)+(1λ)(1+2λ+λ2+3)+0
Step 5.4.2.2
Add 1 and 3.
p(λ)=4(λ+1)+(1λ)(2λ+λ2+4)+0
Step 5.4.2.3
Reorder 2λ and λ2.
p(λ)=4(λ+1)+(1λ)(λ2+2λ+4)+0
p(λ)=4(λ+1)+(1λ)(λ2+2λ+4)+0
p(λ)=4(λ+1)+(1λ)(λ2+2λ+4)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Add 4(λ+1)+(1λ)(λ2+2λ+4) and 0.
p(λ)=4(λ+1)+(1λ)(λ2+2λ+4)
Step 5.5.2
Simplify each term.
Tap for more steps...
Step 5.5.2.1
Apply the distributive property.
p(λ)=4(λ)41+(1λ)(λ2+2λ+4)
Step 5.5.2.2
Multiply 1 by 4.
p(λ)=4λ41+(1λ)(λ2+2λ+4)
Step 5.5.2.3
Multiply 4 by 1.
p(λ)=4λ4+(1λ)(λ2+2λ+4)
Step 5.5.2.4
Expand (1λ)(λ2+2λ+4) by multiplying each term in the first expression by each term in the second expression.
p(λ)=4λ4+1λ2+1(2λ)+14λλ2λ(2λ)λ4
Step 5.5.2.5
Simplify each term.
Tap for more steps...
Step 5.5.2.5.1
Multiply λ2 by 1.
p(λ)=4λ4+λ2+1(2λ)+14λλ2λ(2λ)λ4
Step 5.5.2.5.2
Multiply 2λ by 1.
p(λ)=4λ4+λ2+2λ+14λλ2λ(2λ)λ4
Step 5.5.2.5.3
Multiply 4 by 1.
p(λ)=4λ4+λ2+2λ+4λλ2λ(2λ)λ4
Step 5.5.2.5.4
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 5.5.2.5.4.1
Move λ2.
p(λ)=4λ4+λ2+2λ+4(λ2λ)λ(2λ)λ4
Step 5.5.2.5.4.2
Multiply λ2 by λ.
Tap for more steps...
Step 5.5.2.5.4.2.1
Raise λ to the power of 1.
p(λ)=4λ4+λ2+2λ+4(λ2λ1)λ(2λ)λ4
Step 5.5.2.5.4.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=4λ4+λ2+2λ+4λ2+1λ(2λ)λ4
p(λ)=4λ4+λ2+2λ+4λ2+1λ(2λ)λ4
Step 5.5.2.5.4.3
Add 2 and 1.
p(λ)=4λ4+λ2+2λ+4λ3λ(2λ)λ4
p(λ)=4λ4+λ2+2λ+4λ3λ(2λ)λ4
Step 5.5.2.5.5
Rewrite using the commutative property of multiplication.
p(λ)=4λ4+λ2+2λ+4λ312λλλ4
Step 5.5.2.5.6
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.5.2.5.6.1
Move λ.
p(λ)=4λ4+λ2+2λ+4λ312(λλ)λ4
Step 5.5.2.5.6.2
Multiply λ by λ.
p(λ)=4λ4+λ2+2λ+4λ312λ2λ4
p(λ)=4λ4+λ2+2λ+4λ312λ2λ4
Step 5.5.2.5.7
Multiply 1 by 2.
p(λ)=4λ4+λ2+2λ+4λ32λ2λ4
Step 5.5.2.5.8
Multiply 4 by 1.
p(λ)=4λ4+λ2+2λ+4λ32λ24λ
p(λ)=4λ4+λ2+2λ+4λ32λ24λ
Step 5.5.2.6
Subtract 2λ2 from λ2.
p(λ)=4λ4λ2+2λ+4λ34λ
Step 5.5.2.7
Subtract 4λ from 2λ.
p(λ)=4λ4λ22λ+4λ3
p(λ)=4λ4λ22λ+4λ3
Step 5.5.3
Combine the opposite terms in 4λ4λ22λ+4λ3.
Tap for more steps...
Step 5.5.3.1
Add 4 and 4.
p(λ)=4λλ22λ+0λ3
Step 5.5.3.2
Add 4λλ22λ and 0.
p(λ)=4λλ22λλ3
p(λ)=4λλ22λλ3
Step 5.5.4
Subtract 2λ from 4λ.
p(λ)=λ2+2λλ3
Step 5.5.5
Move 2λ.
p(λ)=λ2λ3+2λ
Step 5.5.6
Reorder λ2 and λ3.
p(λ)=λ3λ2+2λ
p(λ)=λ3λ2+2λ
p(λ)=λ3λ2+2λ
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ3λ2+2λ=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Factor the left side of the equation.
Tap for more steps...
Step 7.1.1
Factor λ out of λ3λ2+2λ.
Tap for more steps...
Step 7.1.1.1
Factor λ out of λ3.
λλ2λ2+2λ=0
Step 7.1.1.2
Factor λ out of λ2.
λλ2λλ+2λ=0
Step 7.1.1.3
Factor λ out of 2λ.
λλ2λλλ2=0
Step 7.1.1.4
Factor λ out of λ(λ2)λ(λ).
λ(λ2+λ)λ2=0
Step 7.1.1.5
Factor λ out of λ(λ2+λ)λ(2).
λ(λ2+λ2)=0
λ(λ2+λ2)=0
Step 7.1.2
Factor.
Tap for more steps...
Step 7.1.2.1
Factor λ2+λ2 using the AC method.
Tap for more steps...
Step 7.1.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 2 and whose sum is 1.
1,2
Step 7.1.2.1.2
Write the factored form using these integers.
λ((λ1)(λ+2))=0
λ((λ1)(λ+2))=0
Step 7.1.2.2
Remove unnecessary parentheses.
λ(λ1)(λ+2)=0
λ(λ1)(λ+2)=0
λ(λ1)(λ+2)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ=0
λ1=0
λ+2=0
Step 7.3
Set λ equal to 0.
λ=0
Step 7.4
Set λ1 equal to 0 and solve for λ.
Tap for more steps...
Step 7.4.1
Set λ1 equal to 0.
λ1=0
Step 7.4.2
Add 1 to both sides of the equation.
λ=1
λ=1
Step 7.5
Set λ+2 equal to 0 and solve for λ.
Tap for more steps...
Step 7.5.1
Set λ+2 equal to 0.
λ+2=0
Step 7.5.2
Subtract 2 from both sides of the equation.
λ=2
λ=2
Step 7.6
The final solution is all the values that make λ(λ1)(λ+2)=0 true.
λ=0,1,2
λ=0,1,2
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay