Linear Algebra Examples
A=[2140]A=[2140]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(A−λI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Step 3.1
Substitute [2140][2140] for AA.
p(λ)=determinant([2140]-λI2)p(λ)=determinant([2140]−λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([2140]-λ[1001])p(λ)=determinant([2140]−λ[1001])
p(λ)=determinant([2140]-λ[1001])p(λ)=determinant([2140]−λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([2140]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([2140]+[−λ⋅1−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([2140]+[-λ-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([2140]+[−λ−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([2140]+[-λ0λ-λ⋅0-λ⋅1])p(λ)=determinant([2140]+[−λ0λ−λ⋅0−λ⋅1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([2140]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([2140]+[−λ0−λ⋅0−λ⋅1])
p(λ)=determinant([2140]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([2140]+[−λ0−λ⋅0−λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.3.1
Multiply 00 by -1−1.
p(λ)=determinant([2140]+[-λ00λ-λ⋅1])p(λ)=determinant([2140]+[−λ00λ−λ⋅1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([2140]+[-λ00-λ⋅1])p(λ)=determinant([2140]+[−λ00−λ⋅1])
p(λ)=determinant([2140]+[-λ00-λ⋅1])p(λ)=determinant([2140]+[−λ00−λ⋅1])
Step 4.1.2.4
Multiply -1−1 by 11.
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[−λ00−λ])
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[−λ00−λ])
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[−λ00−λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ1+04+00-λ]p(λ)=determinant[2−λ1+04+00−λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 11 and 00.
p(λ)=determinant[2-λ14+00-λ]p(λ)=determinant[2−λ14+00−λ]
Step 4.3.2
Add 44 and 00.
p(λ)=determinant[2-λ140-λ]p(λ)=determinant[2−λ140−λ]
Step 4.3.3
Subtract λλ from 00.
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2−λ14−λ]
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2−λ14−λ]
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2−λ14−λ]
Step 5
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
p(λ)=(2-λ)(-λ)-4⋅1p(λ)=(2−λ)(−λ)−4⋅1
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Apply the distributive property.
p(λ)=2(-λ)-λ(-λ)-4⋅1p(λ)=2(−λ)−λ(−λ)−4⋅1
Step 5.2.1.2
Multiply -1−1 by 22.
p(λ)=-2λ-λ(-λ)-4⋅1p(λ)=−2λ−λ(−λ)−4⋅1
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=-2λ-1⋅-1λ⋅λ-4⋅1p(λ)=−2λ−1⋅−1λ⋅λ−4⋅1
Step 5.2.1.4
Simplify each term.
Step 5.2.1.4.1
Multiply λλ by λλ by adding the exponents.
Step 5.2.1.4.1.1
Move λλ.
p(λ)=-2λ-1⋅-1(λ⋅λ)-4⋅1p(λ)=−2λ−1⋅−1(λ⋅λ)−4⋅1
Step 5.2.1.4.1.2
Multiply λλ by λλ.
p(λ)=-2λ-1⋅-1λ2-4⋅1p(λ)=−2λ−1⋅−1λ2−4⋅1
p(λ)=-2λ-1⋅-1λ2-4⋅1p(λ)=−2λ−1⋅−1λ2−4⋅1
Step 5.2.1.4.2
Multiply -1−1 by -1−1.
p(λ)=-2λ+1λ2-4⋅1p(λ)=−2λ+1λ2−4⋅1
Step 5.2.1.4.3
Multiply λ2λ2 by 11.
p(λ)=-2λ+λ2-4⋅1p(λ)=−2λ+λ2−4⋅1
p(λ)=-2λ+λ2-4⋅1p(λ)=−2λ+λ2−4⋅1
Step 5.2.1.5
Multiply -4−4 by 11.
p(λ)=-2λ+λ2-4p(λ)=−2λ+λ2−4
p(λ)=-2λ+λ2-4
Step 5.2.2
Reorder -2λ and λ2.
p(λ)=λ2-2λ-4
p(λ)=λ2-2λ-4
p(λ)=λ2-2λ-4