Linear Algebra Examples

A=[2140]A=[2140]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [2140][2140] for AA.
p(λ)=determinant([2140]-λI2)p(λ)=determinant([2140]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([2140]-λ[1001])p(λ)=determinant([2140]λ[1001])
p(λ)=determinant([2140]-λ[1001])p(λ)=determinant([2140]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([2140]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([2140]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([2140]+[-λ-λ0-λ0-λ1])p(λ)=determinant([2140]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([2140]+[-λ0λ-λ0-λ1])p(λ)=determinant([2140]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([2140]+[-λ0-λ0-λ1])p(λ)=determinant([2140]+[λ0λ0λ1])
p(λ)=determinant([2140]+[-λ0-λ0-λ1])p(λ)=determinant([2140]+[λ0λ0λ1])
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([2140]+[-λ00λ-λ1])p(λ)=determinant([2140]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([2140]+[-λ00-λ1])p(λ)=determinant([2140]+[λ00λ1])
p(λ)=determinant([2140]+[-λ00-λ1])p(λ)=determinant([2140]+[λ00λ1])
Step 4.1.2.4
Multiply -11 by 11.
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[λ00λ])
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[λ00λ])
p(λ)=determinant([2140]+[-λ00-λ])p(λ)=determinant([2140]+[λ00λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ1+04+00-λ]p(λ)=determinant[2λ1+04+00λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 11 and 00.
p(λ)=determinant[2-λ14+00-λ]p(λ)=determinant[2λ14+00λ]
Step 4.3.2
Add 44 and 00.
p(λ)=determinant[2-λ140-λ]p(λ)=determinant[2λ140λ]
Step 4.3.3
Subtract λλ from 00.
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2λ14λ]
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2λ14λ]
p(λ)=determinant[2-λ14-λ]p(λ)=determinant[2λ14λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=(2-λ)(-λ)-41p(λ)=(2λ)(λ)41
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Apply the distributive property.
p(λ)=2(-λ)-λ(-λ)-41p(λ)=2(λ)λ(λ)41
Step 5.2.1.2
Multiply -11 by 22.
p(λ)=-2λ-λ(-λ)-41p(λ)=2λλ(λ)41
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=-2λ-1-1λλ-41p(λ)=2λ11λλ41
Step 5.2.1.4
Simplify each term.
Tap for more steps...
Step 5.2.1.4.1
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 5.2.1.4.1.1
Move λλ.
p(λ)=-2λ-1-1(λλ)-41p(λ)=2λ11(λλ)41
Step 5.2.1.4.1.2
Multiply λλ by λλ.
p(λ)=-2λ-1-1λ2-41p(λ)=2λ11λ241
p(λ)=-2λ-1-1λ2-41p(λ)=2λ11λ241
Step 5.2.1.4.2
Multiply -11 by -11.
p(λ)=-2λ+1λ2-41p(λ)=2λ+1λ241
Step 5.2.1.4.3
Multiply λ2λ2 by 11.
p(λ)=-2λ+λ2-41p(λ)=2λ+λ241
p(λ)=-2λ+λ2-41p(λ)=2λ+λ241
Step 5.2.1.5
Multiply -44 by 11.
p(λ)=-2λ+λ2-4p(λ)=2λ+λ24
p(λ)=-2λ+λ2-4
Step 5.2.2
Reorder -2λ and λ2.
p(λ)=λ2-2λ-4
p(λ)=λ2-2λ-4
p(λ)=λ2-2λ-4
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay