Linear Algebra Examples
[1235]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Step 3.1
Substitute [1235] for A.
p(λ)=determinant([1235]-λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([1235]-λ[1001])
p(λ)=determinant([1235]-λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([1235]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([1235]+[-λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([1235]+[-λ0λ-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([1235]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([1235]+[-λ0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([1235]+[-λ00λ-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([1235]+[-λ00-λ⋅1])
p(λ)=determinant([1235]+[-λ00-λ⋅1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([1235]+[-λ00-λ])
p(λ)=determinant([1235]+[-λ00-λ])
p(λ)=determinant([1235]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[1-λ2+03+05-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 2 and 0.
p(λ)=determinant[1-λ23+05-λ]
Step 4.3.2
Add 3 and 0.
p(λ)=determinant[1-λ235-λ]
p(λ)=determinant[1-λ235-λ]
p(λ)=determinant[1-λ235-λ]
Step 5
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(1-λ)(5-λ)-3⋅2
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Expand (1-λ)(5-λ) using the FOIL Method.
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=1(5-λ)-λ(5-λ)-3⋅2
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=1⋅5+1(-λ)-λ(5-λ)-3⋅2
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=1⋅5+1(-λ)-λ⋅5-λ(-λ)-3⋅2
p(λ)=1⋅5+1(-λ)-λ⋅5-λ(-λ)-3⋅2
Step 5.2.1.2
Simplify and combine like terms.
Step 5.2.1.2.1
Simplify each term.
Step 5.2.1.2.1.1
Multiply 5 by 1.
p(λ)=5+1(-λ)-λ⋅5-λ(-λ)-3⋅2
Step 5.2.1.2.1.2
Multiply -λ by 1.
p(λ)=5-λ-λ⋅5-λ(-λ)-3⋅2
Step 5.2.1.2.1.3
Multiply 5 by -1.
p(λ)=5-λ-5λ-λ(-λ)-3⋅2
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=5-λ-5λ-1⋅-1λ⋅λ-3⋅2
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=5-λ-5λ-1⋅-1(λ⋅λ)-3⋅2
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=5-λ-5λ-1⋅-1λ2-3⋅2
p(λ)=5-λ-5λ-1⋅-1λ2-3⋅2
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=5-λ-5λ+1λ2-3⋅2
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=5-λ-5λ+λ2-3⋅2
p(λ)=5-λ-5λ+λ2-3⋅2
Step 5.2.1.2.2
Subtract 5λ from -λ.
p(λ)=5-6λ+λ2-3⋅2
p(λ)=5-6λ+λ2-3⋅2
Step 5.2.1.3
Multiply -3 by 2.
p(λ)=5-6λ+λ2-6
p(λ)=5-6λ+λ2-6
Step 5.2.2
Subtract 6 from 5.
p(λ)=-6λ+λ2-1
Step 5.2.3
Reorder -6λ and λ2.
p(λ)=λ2-6λ-1
p(λ)=λ2-6λ-1
p(λ)=λ2-6λ-1