Examples

A=[221100021]A=221100021
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]100010001
Step 3
Substitute the known values into p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3).
Tap for more steps...
Step 3.1
Substitute [221100021]221100021 for AA.
p(λ)=determinant([221100021]-λI3)p(λ)=determinant221100021λI3
Step 3.2
Substitute [100010001]100010001 for I3I3.
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant221100021λ100010001
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant221100021λ100010001
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([221100021]+[-λ1-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ1λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([221100021]+[-λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λλ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ0λ-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ0λλ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ0λ0λ0λ1λ0λ0λ0λ1
p(λ)=determinant([221100021]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ00λ-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ00λλ0λ1λ0λ0λ0λ1
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ00λ0λ1λ0λ0λ0λ1
p(λ)=determinant([221100021]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ00λ0λ1λ0λ0λ0λ1
Step 4.1.2.4
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.4.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ000λ-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λλ1λ0λ0λ0λ1
Step 4.1.2.4.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λ1λ0λ0λ0λ1
p(λ)=determinant([221100021]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λ1λ0λ0λ0λ1
Step 4.1.2.5
Multiply -11 by 11.
p(λ)=determinant([221100021]+[-λ000-λ-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λλ0λ0λ0λ1
Step 4.1.2.6
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.6.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ000-λ0λ-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λ0λλ0λ0λ1
Step 4.1.2.6.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λ0λ0λ0λ1
p(λ)=determinant([221100021]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant221100021+λ000λ0λ0λ0λ1
Step 4.1.2.7
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.7.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ000-λ00λ-λ0-λ1])p(λ)=determinant221100021+λ000λ00λλ0λ1
Step 4.1.2.7.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ00-λ0-λ1])p(λ)=determinant221100021+λ000λ00λ0λ1
p(λ)=determinant([221100021]+[-λ000-λ00-λ0-λ1])p(λ)=determinant221100021+λ000λ00λ0λ1
Step 4.1.2.8
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.8.1
Multiply 00 by -11.
p(λ)=determinant([221100021]+[-λ000-λ000λ-λ1])p(λ)=determinant221100021+λ000λ000λλ1
Step 4.1.2.8.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ000-λ1])p(λ)=determinant221100021+λ000λ000λ1
p(λ)=determinant([221100021]+[-λ000-λ000-λ1])p(λ)=determinant221100021+λ000λ000λ1
Step 4.1.2.9
Multiply -11 by 11.
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant221100021+λ000λ000λ
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant221100021+λ000λ000λ
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant221100021+λ000λ000λ
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ2+01+01+00-λ0+00+02+01-λ]p(λ)=determinant2λ2+01+01+00λ0+00+02+01λ
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 22 and 00.
p(λ)=determinant[2-λ21+01+00-λ0+00+02+01-λ]p(λ)=determinant2λ21+01+00λ0+00+02+01λ
Step 4.3.2
Add 11 and 00.
p(λ)=determinant[2-λ211+00-λ0+00+02+01-λ]p(λ)=determinant2λ211+00λ0+00+02+01λ
Step 4.3.3
Add 11 and 00.
p(λ)=determinant[2-λ2110-λ0+00+02+01-λ]p(λ)=determinant2λ2110λ0+00+02+01λ
Step 4.3.4
Subtract λλ from 00.
p(λ)=determinant[2-λ211-λ0+00+02+01-λ]p(λ)=determinant2λ211λ0+00+02+01λ
Step 4.3.5
Add 00 and 00.
p(λ)=determinant[2-λ211-λ00+02+01-λ]p(λ)=determinant2λ211λ00+02+01λ
Step 4.3.6
Add 00 and 00.
p(λ)=determinant[2-λ211-λ002+01-λ]p(λ)=determinant2λ211λ002+01λ
Step 4.3.7
Add 22 and 00.
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant2λ211λ0021λ
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant2λ211λ0021λ
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant2λ211λ0021λ
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-λ021-λ|λ021λ
Step 5.1.4
Multiply element a11a11 by its cofactor.
(2-λ)|-λ021-λ|(2λ)λ021λ
Step 5.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2121-λ|2121λ
Step 5.1.6
Multiply element a21a21 by its cofactor.
-1|2121-λ|12121λ
Step 5.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|21-λ0|21λ0
Step 5.1.8
Multiply element a31a31 by its cofactor.
0|21-λ0|021λ0
Step 5.1.9
Add the terms together.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|p(λ)=(2λ)λ021λ12121λ+021λ0
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|p(λ)=(2λ)λ021λ12121λ+021λ0
Step 5.2
Multiply 00 by |21-λ0|21λ0.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0p(λ)=(2λ)λ021λ12121λ+0
Step 5.3
Evaluate |-λ021-λ|λ021λ.
Tap for more steps...
Step 5.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=(2-λ)(-λ(1-λ)-20)-1|2121-λ|+0p(λ)=(2λ)(λ(1λ)20)12121λ+0
Step 5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(-λ1-λ(-λ)-20)-1|2121-λ|+0p(λ)=(2λ)(λ1λ(λ)20)12121λ+0
Step 5.3.2.1.2
Multiply -11 by 11.
p(λ)=(2-λ)(-λ-λ(-λ)-20)-1|2121-λ|+0p(λ)=(2λ)(λλ(λ)20)12121λ+0
Step 5.3.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=(2-λ)(-λ-1-1λλ-20)-1|2121-λ|+0p(λ)=(2λ)(λ11λλ20)12121λ+0
Step 5.3.2.1.4
Simplify each term.
Tap for more steps...
Step 5.3.2.1.4.1
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 5.3.2.1.4.1.1
Move λλ.
p(λ)=(2-λ)(-λ-1-1(λλ)-20)-1|2121-λ|+0p(λ)=(2λ)(λ11(λλ)20)12121λ+0
Step 5.3.2.1.4.1.2
Multiply λλ by λλ.
p(λ)=(2-λ)(-λ-1-1λ2-20)-1|2121-λ|+0p(λ)=(2λ)(λ11λ220)12121λ+0
p(λ)=(2-λ)(-λ-1-1λ2-20)-1|2121-λ|+0p(λ)=(2λ)(λ11λ220)12121λ+0
Step 5.3.2.1.4.2
Multiply -11 by -11.
p(λ)=(2-λ)(-λ+1λ2-20)-1|2121-λ|+0p(λ)=(2λ)(λ+1λ220)12121λ+0
Step 5.3.2.1.4.3
Multiply λ2λ2 by 11.
p(λ)=(2-λ)(-λ+λ2-20)-1|2121-λ|+0p(λ)=(2λ)(λ+λ220)12121λ+0
p(λ)=(2-λ)(-λ+λ2-20)-1|2121-λ|+0p(λ)=(2λ)(λ+λ220)12121λ+0
Step 5.3.2.1.5
Multiply -22 by 00.
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0p(λ)=(2λ)(λ+λ2+0)12121λ+0
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0p(λ)=(2λ)(λ+λ2+0)12121λ+0
Step 5.3.2.2
Add -λ+λ2λ+λ2 and 00.
p(λ)=(2-λ)(-λ+λ2)-1|2121-λ|+0p(λ)=(2λ)(λ+λ2)12121λ+0
Step 5.3.2.3
Reorder -λ and λ2.
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
Step 5.4
Evaluate |2121-λ|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(λ2-λ)-1(2(1-λ)-21)+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(λ2-λ)-1(21+2(-λ)-21)+0
Step 5.4.2.1.2
Multiply 2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2+2(-λ)-21)+0
Step 5.4.2.1.3
Multiply -1 by 2.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-21)+0
Step 5.4.2.1.4
Multiply -2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
Step 5.4.2.2
Combine the opposite terms in 2-2λ-2.
Tap for more steps...
Step 5.4.2.2.1
Subtract 2 from 2.
p(λ)=(2-λ)(λ2-λ)-1(-2λ+0)+0
Step 5.4.2.2.2
Add -2λ and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Add (2-λ)(λ2-λ)-1(-2λ) and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)
Step 5.5.2
Simplify each term.
Tap for more steps...
Step 5.5.2.1
Expand (2-λ)(λ2-λ) using the FOIL Method.
Tap for more steps...
Step 5.5.2.1.1
Apply the distributive property.
p(λ)=2(λ2-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.2
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.3
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λλ2-λ(-λ)-1(-2λ)
p(λ)=2λ2+2(-λ)-λλ2-λ(-λ)-1(-2λ)
Step 5.5.2.2
Simplify and combine like terms.
Tap for more steps...
Step 5.5.2.2.1
Simplify each term.
Tap for more steps...
Step 5.5.2.2.1.1
Multiply -1 by 2.
p(λ)=2λ2-2λ-λλ2-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 5.5.2.2.1.2.1
Move λ2.
p(λ)=2λ2-2λ-(λ2λ)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2
Multiply λ2 by λ.
Tap for more steps...
Step 5.5.2.2.1.2.2.1
Raise λ to the power of 1.
p(λ)=2λ2-2λ-(λ2λ1)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.3
Add 2 and 1.
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=2λ2-2λ-λ3-1-1λλ-1(-2λ)
Step 5.5.2.2.1.4
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.5.2.2.1.4.1
Move λ.
p(λ)=2λ2-2λ-λ3-1-1(λλ)-1(-2λ)
Step 5.5.2.2.1.4.2
Multiply λ by λ.
p(λ)=2λ2-2λ-λ3-1-1λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3-1-1λ2-1(-2λ)
Step 5.5.2.2.1.5
Multiply -1 by -1.
p(λ)=2λ2-2λ-λ3+1λ2-1(-2λ)
Step 5.5.2.2.1.6
Multiply λ2 by 1.
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
Step 5.5.2.2.2
Add 2λ2 and λ2.
p(λ)=3λ2-2λ-λ3-1(-2λ)
p(λ)=3λ2-2λ-λ3-1(-2λ)
Step 5.5.2.3
Multiply -2 by -1.
p(λ)=3λ2-2λ-λ3+2λ
p(λ)=3λ2-2λ-λ3+2λ
Step 5.5.3
Combine the opposite terms in 3λ2-2λ-λ3+2λ.
Tap for more steps...
Step 5.5.3.1
Add -2λ and 2λ.
p(λ)=3λ2-λ3+0
Step 5.5.3.2
Add 3λ2-λ3 and 0.
p(λ)=3λ2-λ3
p(λ)=3λ2-λ3
Step 5.5.4
Reorder 3λ2 and -λ3.
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+3λ2=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Factor -λ2 out of -λ3+3λ2.
Tap for more steps...
Step 7.1.1
Factor -λ2 out of -λ3.
-λ2λ+3λ2=0
Step 7.1.2
Factor -λ2 out of 3λ2.
-λ2λ-λ2-3=0
Step 7.1.3
Factor -λ2 out of -λ2(λ)-λ2(-3).
-λ2(λ-3)=0
-λ2(λ-3)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ2=0
λ-3=0
Step 7.3
Set λ2 equal to 0 and solve for λ.
Tap for more steps...
Step 7.3.1
Set λ2 equal to 0.
λ2=0
Step 7.3.2
Solve λ2=0 for λ.
Tap for more steps...
Step 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±0
Step 7.3.2.2
Simplify ±0.
Tap for more steps...
Step 7.3.2.2.1
Rewrite 0 as 02.
λ=±02
Step 7.3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
λ=±0
Step 7.3.2.2.3
Plus or minus 0 is 0.
λ=0
λ=0
λ=0
λ=0
Step 7.4
Set λ-3 equal to 0 and solve for λ.
Tap for more steps...
Step 7.4.1
Set λ-3 equal to 0.
λ-3=0
Step 7.4.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 7.5
The final solution is all the values that make -λ2(λ-3)=0 true.
λ=0,3
λ=0,3
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay