Examples
A=[221100021]A=⎡⎢⎣221100021⎤⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(A−λI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]⎡⎢⎣100010001⎤⎥⎦
Step 3
Step 3.1
Substitute [221100021]⎡⎢⎣221100021⎤⎥⎦ for AA.
p(λ)=determinant([221100021]-λI3)p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λI3⎞⎟⎠
Step 3.2
Substitute [100010001]⎡⎢⎣100010001⎤⎥⎦ for I3I3.
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([221100021]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([221100021]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0λ−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.3
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.3.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ00λ−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ00−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ00−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.4
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.4.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000λ−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.4.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.5
Multiply -1−1 by 11.
p(λ)=determinant([221100021]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.6
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.6.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ0λ−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.6.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.7
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.7.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ000-λ00λ-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ00λ−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.7.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ00-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ00−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ00-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ00−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.8
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.8.1
Multiply 00 by -1−1.
p(λ)=determinant([221100021]+[-λ000-λ000λ-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000λ−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.8.2
Multiply 00 by λλ.
p(λ)=determinant([221100021]+[-λ000-λ000-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ000-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.9
Multiply -1−1 by 11.
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000−λ⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000−λ⎤⎥⎦⎞⎟⎠
p(λ)=determinant([221100021]+[-λ000-λ000-λ])p(λ)=determinant⎛⎜⎝⎡⎢⎣221100021⎤⎥⎦+⎡⎢⎣−λ000−λ000−λ⎤⎥⎦⎞⎟⎠
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ2+01+01+00-λ0+00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ2+01+01+00−λ0+00+02+01−λ⎤⎥⎦
Step 4.3
Simplify each element.
Step 4.3.1
Add 22 and 00.
p(λ)=determinant[2-λ21+01+00-λ0+00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ21+01+00−λ0+00+02+01−λ⎤⎥⎦
Step 4.3.2
Add 11 and 00.
p(λ)=determinant[2-λ211+00-λ0+00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ211+00−λ0+00+02+01−λ⎤⎥⎦
Step 4.3.3
Add 11 and 00.
p(λ)=determinant[2-λ2110-λ0+00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ2110−λ0+00+02+01−λ⎤⎥⎦
Step 4.3.4
Subtract λλ from 00.
p(λ)=determinant[2-λ211-λ0+00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ0+00+02+01−λ⎤⎥⎦
Step 4.3.5
Add 00 and 00.
p(λ)=determinant[2-λ211-λ00+02+01-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ00+02+01−λ⎤⎥⎦
Step 4.3.6
Add 00 and 00.
p(λ)=determinant[2-λ211-λ002+01-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ002+01−λ⎤⎥⎦
Step 4.3.7
Add 22 and 00.
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ0021−λ⎤⎥⎦
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ0021−λ⎤⎥⎦
p(λ)=determinant[2-λ211-λ0021-λ]p(λ)=determinant⎡⎢⎣2−λ211−λ0021−λ⎤⎥⎦
Step 5
Step 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 5.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-λ021-λ|∣∣∣−λ021−λ∣∣∣
Step 5.1.4
Multiply element a11a11 by its cofactor.
(2-λ)|-λ021-λ|(2−λ)∣∣∣−λ021−λ∣∣∣
Step 5.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2121-λ|∣∣∣2121−λ∣∣∣
Step 5.1.6
Multiply element a21a21 by its cofactor.
-1|2121-λ|−1∣∣∣2121−λ∣∣∣
Step 5.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|21-λ0|∣∣∣21−λ0∣∣∣
Step 5.1.8
Multiply element a31a31 by its cofactor.
0|21-λ0|0∣∣∣21−λ0∣∣∣
Step 5.1.9
Add the terms together.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|p(λ)=(2−λ)∣∣∣−λ021−λ∣∣∣−1∣∣∣2121−λ∣∣∣+0∣∣∣21−λ0∣∣∣
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0|21-λ0|p(λ)=(2−λ)∣∣∣−λ021−λ∣∣∣−1∣∣∣2121−λ∣∣∣+0∣∣∣21−λ0∣∣∣
Step 5.2
Multiply 00 by |21-λ0|∣∣∣21−λ0∣∣∣.
p(λ)=(2-λ)|-λ021-λ|-1|2121-λ|+0p(λ)=(2−λ)∣∣∣−λ021−λ∣∣∣−1∣∣∣2121−λ∣∣∣+0
Step 5.3
Evaluate |-λ021-λ|∣∣∣−λ021−λ∣∣∣.
Step 5.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
p(λ)=(2-λ)(-λ(1-λ)-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ(1−λ)−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2
Simplify the determinant.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(-λ⋅1-λ(-λ)-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ⋅1−λ(−λ)−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.2
Multiply -1−1 by 11.
p(λ)=(2-λ)(-λ-λ(-λ)-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ−λ(−λ)−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=(2-λ)(-λ-1⋅-1λ⋅λ-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ−1⋅−1λ⋅λ−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.4
Simplify each term.
Step 5.3.2.1.4.1
Multiply λλ by λλ by adding the exponents.
Step 5.3.2.1.4.1.1
Move λλ.
p(λ)=(2-λ)(-λ-1⋅-1(λ⋅λ)-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ−1⋅−1(λ⋅λ)−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.4.1.2
Multiply λλ by λλ.
p(λ)=(2-λ)(-λ-1⋅-1λ2-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ−1⋅−1λ2−2⋅0)−1∣∣∣2121−λ∣∣∣+0
p(λ)=(2-λ)(-λ-1⋅-1λ2-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ−1⋅−1λ2−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.4.2
Multiply -1−1 by -1−1.
p(λ)=(2-λ)(-λ+1λ2-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ+1λ2−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.4.3
Multiply λ2λ2 by 11.
p(λ)=(2-λ)(-λ+λ2-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ+λ2−2⋅0)−1∣∣∣2121−λ∣∣∣+0
p(λ)=(2-λ)(-λ+λ2-2⋅0)-1|2121-λ|+0p(λ)=(2−λ)(−λ+λ2−2⋅0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.1.5
Multiply -2−2 by 00.
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0p(λ)=(2−λ)(−λ+λ2+0)−1∣∣∣2121−λ∣∣∣+0
p(λ)=(2-λ)(-λ+λ2+0)-1|2121-λ|+0p(λ)=(2−λ)(−λ+λ2+0)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.2
Add -λ+λ2−λ+λ2 and 00.
p(λ)=(2-λ)(-λ+λ2)-1|2121-λ|+0p(λ)=(2−λ)(−λ+λ2)−1∣∣∣2121−λ∣∣∣+0
Step 5.3.2.3
Reorder -λ and λ2.
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
p(λ)=(2-λ)(λ2-λ)-1|2121-λ|+0
Step 5.4
Evaluate |2121-λ|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(λ2-λ)-1(2(1-λ)-2⋅1)+0
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Apply the distributive property.
p(λ)=(2-λ)(λ2-λ)-1(2⋅1+2(-λ)-2⋅1)+0
Step 5.4.2.1.2
Multiply 2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2+2(-λ)-2⋅1)+0
Step 5.4.2.1.3
Multiply -1 by 2.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2⋅1)+0
Step 5.4.2.1.4
Multiply -2 by 1.
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
p(λ)=(2-λ)(λ2-λ)-1(2-2λ-2)+0
Step 5.4.2.2
Combine the opposite terms in 2-2λ-2.
Step 5.4.2.2.1
Subtract 2 from 2.
p(λ)=(2-λ)(λ2-λ)-1(-2λ+0)+0
Step 5.4.2.2.2
Add -2λ and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
p(λ)=(2-λ)(λ2-λ)-1(-2λ)+0
Step 5.5
Simplify the determinant.
Step 5.5.1
Add (2-λ)(λ2-λ)-1(-2λ) and 0.
p(λ)=(2-λ)(λ2-λ)-1(-2λ)
Step 5.5.2
Simplify each term.
Step 5.5.2.1
Expand (2-λ)(λ2-λ) using the FOIL Method.
Step 5.5.2.1.1
Apply the distributive property.
p(λ)=2(λ2-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.2
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λ(λ2-λ)-1(-2λ)
Step 5.5.2.1.3
Apply the distributive property.
p(λ)=2λ2+2(-λ)-λ⋅λ2-λ(-λ)-1(-2λ)
p(λ)=2λ2+2(-λ)-λ⋅λ2-λ(-λ)-1(-2λ)
Step 5.5.2.2
Simplify and combine like terms.
Step 5.5.2.2.1
Simplify each term.
Step 5.5.2.2.1.1
Multiply -1 by 2.
p(λ)=2λ2-2λ-λ⋅λ2-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2
Multiply λ by λ2 by adding the exponents.
Step 5.5.2.2.1.2.1
Move λ2.
p(λ)=2λ2-2λ-(λ2λ)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2
Multiply λ2 by λ.
Step 5.5.2.2.1.2.2.1
Raise λ to the power of 1.
p(λ)=2λ2-2λ-(λ2λ1)-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ2+1-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.2.3
Add 2 and 1.
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
p(λ)=2λ2-2λ-λ3-λ(-λ)-1(-2λ)
Step 5.5.2.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=2λ2-2λ-λ3-1⋅-1λ⋅λ-1(-2λ)
Step 5.5.2.2.1.4
Multiply λ by λ by adding the exponents.
Step 5.5.2.2.1.4.1
Move λ.
p(λ)=2λ2-2λ-λ3-1⋅-1(λ⋅λ)-1(-2λ)
Step 5.5.2.2.1.4.2
Multiply λ by λ.
p(λ)=2λ2-2λ-λ3-1⋅-1λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3-1⋅-1λ2-1(-2λ)
Step 5.5.2.2.1.5
Multiply -1 by -1.
p(λ)=2λ2-2λ-λ3+1λ2-1(-2λ)
Step 5.5.2.2.1.6
Multiply λ2 by 1.
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
p(λ)=2λ2-2λ-λ3+λ2-1(-2λ)
Step 5.5.2.2.2
Add 2λ2 and λ2.
p(λ)=3λ2-2λ-λ3-1(-2λ)
p(λ)=3λ2-2λ-λ3-1(-2λ)
Step 5.5.2.3
Multiply -2 by -1.
p(λ)=3λ2-2λ-λ3+2λ
p(λ)=3λ2-2λ-λ3+2λ
Step 5.5.3
Combine the opposite terms in 3λ2-2λ-λ3+2λ.
Step 5.5.3.1
Add -2λ and 2λ.
p(λ)=3λ2-λ3+0
Step 5.5.3.2
Add 3λ2-λ3 and 0.
p(λ)=3λ2-λ3
p(λ)=3λ2-λ3
Step 5.5.4
Reorder 3λ2 and -λ3.
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
p(λ)=-λ3+3λ2
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+3λ2=0
Step 7
Step 7.1
Factor -λ2 out of -λ3+3λ2.
Step 7.1.1
Factor -λ2 out of -λ3.
-λ2λ+3λ2=0
Step 7.1.2
Factor -λ2 out of 3λ2.
-λ2λ-λ2⋅-3=0
Step 7.1.3
Factor -λ2 out of -λ2(λ)-λ2(-3).
-λ2(λ-3)=0
-λ2(λ-3)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ2=0
λ-3=0
Step 7.3
Set λ2 equal to 0 and solve for λ.
Step 7.3.1
Set λ2 equal to 0.
λ2=0
Step 7.3.2
Solve λ2=0 for λ.
Step 7.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√0
Step 7.3.2.2
Simplify ±√0.
Step 7.3.2.2.1
Rewrite 0 as 02.
λ=±√02
Step 7.3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
λ=±0
Step 7.3.2.2.3
Plus or minus 0 is 0.
λ=0
λ=0
λ=0
λ=0
Step 7.4
Set λ-3 equal to 0 and solve for λ.
Step 7.4.1
Set λ-3 equal to 0.
λ-3=0
Step 7.4.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 7.5
The final solution is all the values that make -λ2(λ-3)=0 true.
λ=0,3
λ=0,3