Examples

(1,3,6) , (1,6,4)
Step 1
To find the distance between two 3d points, square the difference of the x, y, and z points. Then, sum them and take the square root.
(x2x1)2+(y2y1)2+(z2z1)2
Step 2
Replace x1, x2, y1, y2, z1, and z2 with the corresponding values.
Distance=(1(1))2+(6(3))2+(46)2
Step 3
Simplify the expression (1(1))2+(6(3))2+(46)2.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Multiply 1 by each element of the matrix.
Distance=(1+1)2+(6(3))2+(46)2
Step 3.1.2
Multiply 1 by 1.
Distance=(1+1)2+(6(3))2+(46)2
Distance=(1+1)2+(6(3))2+(46)2
Step 3.2
Simplify the expression.
Tap for more steps...
Step 3.2.1
Add 1 and 1.
Distance=02+(6(3))2+(46)2
Step 3.2.2
Raising 0 to any positive power yields 0.
Distance=0+(6(3))2+(46)2
Distance=0+(6(3))2+(46)2
Step 3.3
Simplify each term.
Tap for more steps...
Step 3.3.1
Multiply 1 by each element of the matrix.
Distance=0+(6+3)2+(46)2
Step 3.3.2
Multiply 1 by 3.
Distance=0+(6+3)2+(46)2
Distance=0+(6+3)2+(46)2
Step 3.4
Simplify the expression.
Tap for more steps...
Step 3.4.1
Add 6 and 3.
Distance=0+92+(46)2
Step 3.4.2
Raise 9 to the power of 2.
Distance=0+81+(46)2
Step 3.4.3
Subtract 6 from 4.
Distance=0+81+(10)2
Step 3.4.4
Raise 10 to the power of 2.
Distance=0+81+100
Step 3.4.5
Add 0 and 81.
Distance=81+100
Step 3.4.6
Add 81 and 100.
Distance=181
Distance=181
Distance=181
Step 4
The distance between (1,3,6) and (1,6,4) is 181.
18113.45362404
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 x2  12  π  xdx  
AmazonPay