Examples
(−1,−3,6) , (−1,6,−4)
Step 1
To find the distance between two 3d points, square the difference of the x, y, and z points. Then, sum them and take the square root.
√(x2−x1)2+(y2−y1)2+(z2−z1)2
Step 2
Replace x1, x2, y1, y2, z1, and z2 with the corresponding values.
Distance=√(−1−(−1))2+(6−(−3))2+(−4−6)2
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply −1 by each element of the matrix.
Distance=√(−1+1)2+(6−(−3))2+(−4−6)2
Step 3.1.2
Multiply −1 by −1.
Distance=√(−1+1)2+(6−(−3))2+(−4−6)2
Distance=√(−1+1)2+(6−(−3))2+(−4−6)2
Step 3.2
Simplify the expression.
Step 3.2.1
Add −1 and 1.
Distance=√02+(6−(−3))2+(−4−6)2
Step 3.2.2
Raising 0 to any positive power yields 0.
Distance=√0+(6−(−3))2+(−4−6)2
Distance=√0+(6−(−3))2+(−4−6)2
Step 3.3
Simplify each term.
Step 3.3.1
Multiply −1 by each element of the matrix.
Distance=√0+(6+3)2+(−4−6)2
Step 3.3.2
Multiply −1 by −3.
Distance=√0+(6+3)2+(−4−6)2
Distance=√0+(6+3)2+(−4−6)2
Step 3.4
Simplify the expression.
Step 3.4.1
Add 6 and 3.
Distance=√0+92+(−4−6)2
Step 3.4.2
Raise 9 to the power of 2.
Distance=√0+81+(−4−6)2
Step 3.4.3
Subtract 6 from −4.
Distance=√0+81+(−10)2
Step 3.4.4
Raise −10 to the power of 2.
Distance=√0+81+100
Step 3.4.5
Add 0 and 81.
Distance=√81+100
Step 3.4.6
Add 81 and 100.
Distance=√181
Distance=√181
Distance=√181
Step 4
The distance between (−1,−3,6) and (−1,6,−4) is √181.
√181≈13.45362404