Finite Math Examples
3z+3x+3y=193z+3x+3y=19 , x+3=yx+3=y , z=y-4x+1z=y−4x+1
Step 1
Step 1.1
Move 3z3z.
3x+3y+3z=193x+3y+3z=19
x+3=yx+3=y
z=y-4x+1z=y−4x+1
Step 1.2
Subtract yy from both sides of the equation.
3x+3y+3z=193x+3y+3z=19
x+3-y=0x+3−y=0
z=y-4x+1z=y−4x+1
Step 1.3
Subtract 33 from both sides of the equation.
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
z=y-4x+1z=y−4x+1
Step 1.4
Move all terms containing variables to the left side of the equation.
Step 1.4.1
Subtract yy from both sides of the equation.
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
z-y=-4x+1z−y=−4x+1
Step 1.4.2
Add 4x4x to both sides of the equation.
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
z-y+4x=1z−y+4x=1
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
z-y+4x=1z−y+4x=1
Step 1.5
Move zz.
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
-y+4x+z=1−y+4x+z=1
Step 1.6
Reorder -y−y and 4x4x.
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
4x-y+z=14x−y+z=1
3x+3y+3z=193x+3y+3z=19
x-y=-3x−y=−3
4x-y+z=14x−y+z=1
Step 2
Represent the system of equations in matrix format.
[3331-104-11][xyz]=[19-31]⎡⎢⎣3331−104−11⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣19−31⎤⎥⎦
Step 3
Step 3.1
Write [3331-104-11]⎡⎢⎣3331−104−11⎤⎥⎦ in determinant notation.
|3331-104-11|∣∣
∣∣3331−104−11∣∣
∣∣
Step 3.2
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Step 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 3.2.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 3.2.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|33-11|∣∣∣33−11∣∣∣
Step 3.2.4
Multiply element a21a21 by its cofactor.
-1|33-11|−1∣∣∣33−11∣∣∣
Step 3.2.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|3341|∣∣∣3341∣∣∣
Step 3.2.6
Multiply element a22a22 by its cofactor.
-1|3341|−1∣∣∣3341∣∣∣
Step 3.2.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|334-1|∣∣∣334−1∣∣∣
Step 3.2.8
Multiply element a23a23 by its cofactor.
0|334-1|0∣∣∣334−1∣∣∣
Step 3.2.9
Add the terms together.
-1|33-11|-1|3341|+0|334-1|−1∣∣∣33−11∣∣∣−1∣∣∣3341∣∣∣+0∣∣∣334−1∣∣∣
-1|33-11|-1|3341|+0|334-1|−1∣∣∣33−11∣∣∣−1∣∣∣3341∣∣∣+0∣∣∣334−1∣∣∣
Step 3.3
Multiply 00 by |334-1|∣∣∣334−1∣∣∣.
-1|33-11|-1|3341|+0−1∣∣∣33−11∣∣∣−1∣∣∣3341∣∣∣+0
Step 3.4
Evaluate |33-11|∣∣∣33−11∣∣∣.
Step 3.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-1(3⋅1-(-1⋅3))-1|3341|+0−1(3⋅1−(−1⋅3))−1∣∣∣3341∣∣∣+0
Step 3.4.2
Simplify the determinant.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Multiply 33 by 11.
-1(3-(-1⋅3))-1|3341|+0−1(3−(−1⋅3))−1∣∣∣3341∣∣∣+0
Step 3.4.2.1.2
Multiply -(-1⋅3)−(−1⋅3).
Step 3.4.2.1.2.1
Multiply -1−1 by 33.
-1(3--3)-1|3341|+0−1(3−−3)−1∣∣∣3341∣∣∣+0
Step 3.4.2.1.2.2
Multiply -1−1 by -3−3.
-1(3+3)-1|3341|+0−1(3+3)−1∣∣∣3341∣∣∣+0
-1(3+3)-1|3341|+0−1(3+3)−1∣∣∣3341∣∣∣+0
-1(3+3)-1|3341|+0
Step 3.4.2.2
Add 3 and 3.
-1⋅6-1|3341|+0
-1⋅6-1|3341|+0
-1⋅6-1|3341|+0
Step 3.5
Evaluate |3341|.
Step 3.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅6-1(3⋅1-4⋅3)+0
Step 3.5.2
Simplify the determinant.
Step 3.5.2.1
Simplify each term.
Step 3.5.2.1.1
Multiply 3 by 1.
-1⋅6-1(3-4⋅3)+0
Step 3.5.2.1.2
Multiply -4 by 3.
-1⋅6-1(3-12)+0
-1⋅6-1(3-12)+0
Step 3.5.2.2
Subtract 12 from 3.
-1⋅6-1⋅-9+0
-1⋅6-1⋅-9+0
-1⋅6-1⋅-9+0
Step 3.6
Simplify the determinant.
Step 3.6.1
Simplify each term.
Step 3.6.1.1
Multiply -1 by 6.
-6-1⋅-9+0
Step 3.6.1.2
Multiply -1 by -9.
-6+9+0
-6+9+0
Step 3.6.2
Add -6 and 9.
3+0
Step 3.6.3
Add 3 and 0.
3
3
D=3
Step 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 1 of the coefficient matrix that corresponds to the x-coefficients of the system with [19-31].
|1933-3-101-11|
Step 5.2
Find the determinant.
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|33-11|
Step 5.2.1.4
Multiply element a21 by its cofactor.
3|33-11|
Step 5.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|19311|
Step 5.2.1.6
Multiply element a22 by its cofactor.
-1|19311|
Step 5.2.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1931-1|
Step 5.2.1.8
Multiply element a23 by its cofactor.
0|1931-1|
Step 5.2.1.9
Add the terms together.
3|33-11|-1|19311|+0|1931-1|
3|33-11|-1|19311|+0|1931-1|
Step 5.2.2
Multiply 0 by |1931-1|.
3|33-11|-1|19311|+0
Step 5.2.3
Evaluate |33-11|.
Step 5.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3(3⋅1-(-1⋅3))-1|19311|+0
Step 5.2.3.2
Simplify the determinant.
Step 5.2.3.2.1
Simplify each term.
Step 5.2.3.2.1.1
Multiply 3 by 1.
3(3-(-1⋅3))-1|19311|+0
Step 5.2.3.2.1.2
Multiply -(-1⋅3).
Step 5.2.3.2.1.2.1
Multiply -1 by 3.
3(3--3)-1|19311|+0
Step 5.2.3.2.1.2.2
Multiply -1 by -3.
3(3+3)-1|19311|+0
3(3+3)-1|19311|+0
3(3+3)-1|19311|+0
Step 5.2.3.2.2
Add 3 and 3.
3⋅6-1|19311|+0
3⋅6-1|19311|+0
3⋅6-1|19311|+0
Step 5.2.4
Evaluate |19311|.
Step 5.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅6-1(19⋅1-1⋅3)+0
Step 5.2.4.2
Simplify the determinant.
Step 5.2.4.2.1
Simplify each term.
Step 5.2.4.2.1.1
Multiply 19 by 1.
3⋅6-1(19-1⋅3)+0
Step 5.2.4.2.1.2
Multiply -1 by 3.
3⋅6-1(19-3)+0
3⋅6-1(19-3)+0
Step 5.2.4.2.2
Subtract 3 from 19.
3⋅6-1⋅16+0
3⋅6-1⋅16+0
3⋅6-1⋅16+0
Step 5.2.5
Simplify the determinant.
Step 5.2.5.1
Simplify each term.
Step 5.2.5.1.1
Multiply 3 by 6.
18-1⋅16+0
Step 5.2.5.1.2
Multiply -1 by 16.
18-16+0
18-16+0
Step 5.2.5.2
Subtract 16 from 18.
2+0
Step 5.2.5.3
Add 2 and 0.
2
2
Dx=2
Step 5.3
Use the formula to solve for x.
x=DxD
Step 5.4
Substitute 3 for D and 2 for Dx in the formula.
x=23
x=23
Step 6
Step 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [19-31].
|31931-30411|
Step 6.2
Find the determinant.
Step 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|19311|
Step 6.2.1.4
Multiply element a21 by its cofactor.
-1|19311|
Step 6.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|3341|
Step 6.2.1.6
Multiply element a22 by its cofactor.
-3|3341|
Step 6.2.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|31941|
Step 6.2.1.8
Multiply element a23 by its cofactor.
0|31941|
Step 6.2.1.9
Add the terms together.
-1|19311|-3|3341|+0|31941|
-1|19311|-3|3341|+0|31941|
Step 6.2.2
Multiply 0 by |31941|.
-1|19311|-3|3341|+0
Step 6.2.3
Evaluate |19311|.
Step 6.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(19⋅1-1⋅3)-3|3341|+0
Step 6.2.3.2
Simplify the determinant.
Step 6.2.3.2.1
Simplify each term.
Step 6.2.3.2.1.1
Multiply 19 by 1.
-1(19-1⋅3)-3|3341|+0
Step 6.2.3.2.1.2
Multiply -1 by 3.
-1(19-3)-3|3341|+0
-1(19-3)-3|3341|+0
Step 6.2.3.2.2
Subtract 3 from 19.
-1⋅16-3|3341|+0
-1⋅16-3|3341|+0
-1⋅16-3|3341|+0
Step 6.2.4
Evaluate |3341|.
Step 6.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅16-3(3⋅1-4⋅3)+0
Step 6.2.4.2
Simplify the determinant.
Step 6.2.4.2.1
Simplify each term.
Step 6.2.4.2.1.1
Multiply 3 by 1.
-1⋅16-3(3-4⋅3)+0
Step 6.2.4.2.1.2
Multiply -4 by 3.
-1⋅16-3(3-12)+0
-1⋅16-3(3-12)+0
Step 6.2.4.2.2
Subtract 12 from 3.
-1⋅16-3⋅-9+0
-1⋅16-3⋅-9+0
-1⋅16-3⋅-9+0
Step 6.2.5
Simplify the determinant.
Step 6.2.5.1
Simplify each term.
Step 6.2.5.1.1
Multiply -1 by 16.
-16-3⋅-9+0
Step 6.2.5.1.2
Multiply -3 by -9.
-16+27+0
-16+27+0
Step 6.2.5.2
Add -16 and 27.
11+0
Step 6.2.5.3
Add 11 and 0.
11
11
Dy=11
Step 6.3
Use the formula to solve for y.
y=DyD
Step 6.4
Substitute 3 for D and 11 for Dy in the formula.
y=113
y=113
Step 7
Step 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [19-31].
|33191-1-34-11|
Step 7.2
Find the determinant.
Step 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-1-3-11|
Step 7.2.1.4
Multiply element a11 by its cofactor.
3|-1-3-11|
Step 7.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-341|
Step 7.2.1.6
Multiply element a12 by its cofactor.
-3|1-341|
Step 7.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-14-1|
Step 7.2.1.8
Multiply element a13 by its cofactor.
19|1-14-1|
Step 7.2.1.9
Add the terms together.
3|-1-3-11|-3|1-341|+19|1-14-1|
3|-1-3-11|-3|1-341|+19|1-14-1|
Step 7.2.2
Evaluate |-1-3-11|.
Step 7.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3(-1⋅1---3)-3|1-341|+19|1-14-1|
Step 7.2.2.2
Simplify the determinant.
Step 7.2.2.2.1
Simplify each term.
Step 7.2.2.2.1.1
Multiply -1 by 1.
3(-1---3)-3|1-341|+19|1-14-1|
Step 7.2.2.2.1.2
Multiply ---3.
Step 7.2.2.2.1.2.1
Multiply -1 by -3.
3(-1-1⋅3)-3|1-341|+19|1-14-1|
Step 7.2.2.2.1.2.2
Multiply -1 by 3.
3(-1-3)-3|1-341|+19|1-14-1|
3(-1-3)-3|1-341|+19|1-14-1|
3(-1-3)-3|1-341|+19|1-14-1|
Step 7.2.2.2.2
Subtract 3 from -1.
3⋅-4-3|1-341|+19|1-14-1|
3⋅-4-3|1-341|+19|1-14-1|
3⋅-4-3|1-341|+19|1-14-1|
Step 7.2.3
Evaluate |1-341|.
Step 7.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅-4-3(1⋅1-4⋅-3)+19|1-14-1|
Step 7.2.3.2
Simplify the determinant.
Step 7.2.3.2.1
Simplify each term.
Step 7.2.3.2.1.1
Multiply 1 by 1.
3⋅-4-3(1-4⋅-3)+19|1-14-1|
Step 7.2.3.2.1.2
Multiply -4 by -3.
3⋅-4-3(1+12)+19|1-14-1|
3⋅-4-3(1+12)+19|1-14-1|
Step 7.2.3.2.2
Add 1 and 12.
3⋅-4-3⋅13+19|1-14-1|
3⋅-4-3⋅13+19|1-14-1|
3⋅-4-3⋅13+19|1-14-1|
Step 7.2.4
Evaluate |1-14-1|.
Step 7.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅-4-3⋅13+19(1⋅-1-4⋅-1)
Step 7.2.4.2
Simplify the determinant.
Step 7.2.4.2.1
Simplify each term.
Step 7.2.4.2.1.1
Multiply -1 by 1.
3⋅-4-3⋅13+19(-1-4⋅-1)
Step 7.2.4.2.1.2
Multiply -4 by -1.
3⋅-4-3⋅13+19(-1+4)
3⋅-4-3⋅13+19(-1+4)
Step 7.2.4.2.2
Add -1 and 4.
3⋅-4-3⋅13+19⋅3
3⋅-4-3⋅13+19⋅3
3⋅-4-3⋅13+19⋅3
Step 7.2.5
Simplify the determinant.
Step 7.2.5.1
Simplify each term.
Step 7.2.5.1.1
Multiply 3 by -4.
-12-3⋅13+19⋅3
Step 7.2.5.1.2
Multiply -3 by 13.
-12-39+19⋅3
Step 7.2.5.1.3
Multiply 19 by 3.
-12-39+57
-12-39+57
Step 7.2.5.2
Subtract 39 from -12.
-51+57
Step 7.2.5.3
Add -51 and 57.
6
6
Dz=6
Step 7.3
Use the formula to solve for z.
z=DzD
Step 7.4
Substitute 3 for D and 6 for Dz in the formula.
z=63
Step 7.5
Divide 6 by 3.
z=2
z=2
Step 8
List the solution to the system of equations.
x=23
y=113
z=2