Finite Math Examples

Solve Using a Matrix with Cramer's Rule
y=3x+z-2 , z=3x+4 , y=5z
Step 1
Move all of the variables to the left side of each equation.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract 3x from both sides of the equation.
y-3x=z-2
z=3x+4
y=5z
Step 1.1.2
Subtract z from both sides of the equation.
y-3x-z=-2
z=3x+4
y=5z
y-3x-z=-2
z=3x+4
y=5z
Step 1.2
Reorder y and -3x.
-3x+y-z=-2
z=3x+4
y=5z
Step 1.3
Subtract 3x from both sides of the equation.
-3x+y-z=-2
z-3x=4
y=5z
Step 1.4
Reorder z and -3x.
-3x+y-z=-2
-3x+z=4
y=5z
Step 1.5
Subtract 5z from both sides of the equation.
-3x+y-z=-2
-3x+z=4
y-5z=0
-3x+y-z=-2
-3x+z=4
y-5z=0
Step 2
Represent the system of equations in matrix format.
[-31-1-30101-5][xyz]=[-240]
Step 3
Find the determinant of the coefficient matrix [-31-1-30101-5].
Tap for more steps...
Step 3.1
Write [-31-1-30101-5] in determinant notation.
|-31-1-30101-5|
Step 3.2
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Tap for more steps...
Step 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.2.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
Step 3.2.4
Multiply element a11 by its cofactor.
-3|011-5|
Step 3.2.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
Step 3.2.6
Multiply element a21 by its cofactor.
3|1-11-5|
Step 3.2.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 3.2.8
Multiply element a31 by its cofactor.
0|1-101|
Step 3.2.9
Add the terms together.
-3|011-5|+3|1-11-5|+0|1-101|
-3|011-5|+3|1-11-5|+0|1-101|
Step 3.3
Multiply 0 by |1-101|.
-3|011-5|+3|1-11-5|+0
Step 3.4
Evaluate |011-5|.
Tap for more steps...
Step 3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3(0-5-11)+3|1-11-5|+0
Step 3.4.2
Simplify the determinant.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Multiply 0 by -5.
-3(0-11)+3|1-11-5|+0
Step 3.4.2.1.2
Multiply -1 by 1.
-3(0-1)+3|1-11-5|+0
-3(0-1)+3|1-11-5|+0
Step 3.4.2.2
Subtract 1 from 0.
-3-1+3|1-11-5|+0
-3-1+3|1-11-5|+0
-3-1+3|1-11-5|+0
Step 3.5
Evaluate |1-11-5|.
Tap for more steps...
Step 3.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3-1+3(1-5-1-1)+0
Step 3.5.2
Simplify the determinant.
Tap for more steps...
Step 3.5.2.1
Simplify each term.
Tap for more steps...
Step 3.5.2.1.1
Multiply -5 by 1.
-3-1+3(-5-1-1)+0
Step 3.5.2.1.2
Multiply -1 by -1.
-3-1+3(-5+1)+0
-3-1+3(-5+1)+0
Step 3.5.2.2
Add -5 and 1.
-3-1+3-4+0
-3-1+3-4+0
-3-1+3-4+0
Step 3.6
Simplify the determinant.
Tap for more steps...
Step 3.6.1
Simplify each term.
Tap for more steps...
Step 3.6.1.1
Multiply -3 by -1.
3+3-4+0
Step 3.6.1.2
Multiply 3 by -4.
3-12+0
3-12+0
Step 3.6.2
Subtract 12 from 3.
-9+0
Step 3.6.3
Add -9 and 0.
-9
-9
D=-9
Step 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Step 5
Find the value of x by Cramer's Rule, which states that x=DxD.
Tap for more steps...
Step 5.1
Replace column 1 of the coefficient matrix that corresponds to the x-coefficients of the system with [-240].
|-21-140101-5|
Step 5.2
Find the determinant.
Tap for more steps...
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Tap for more steps...
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
Step 5.2.1.4
Multiply element a11 by its cofactor.
-2|011-5|
Step 5.2.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
Step 5.2.1.6
Multiply element a21 by its cofactor.
-4|1-11-5|
Step 5.2.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 5.2.1.8
Multiply element a31 by its cofactor.
0|1-101|
Step 5.2.1.9
Add the terms together.
-2|011-5|-4|1-11-5|+0|1-101|
-2|011-5|-4|1-11-5|+0|1-101|
Step 5.2.2
Multiply 0 by |1-101|.
-2|011-5|-4|1-11-5|+0
Step 5.2.3
Evaluate |011-5|.
Tap for more steps...
Step 5.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2(0-5-11)-4|1-11-5|+0
Step 5.2.3.2
Simplify the determinant.
Tap for more steps...
Step 5.2.3.2.1
Simplify each term.
Tap for more steps...
Step 5.2.3.2.1.1
Multiply 0 by -5.
-2(0-11)-4|1-11-5|+0
Step 5.2.3.2.1.2
Multiply -1 by 1.
-2(0-1)-4|1-11-5|+0
-2(0-1)-4|1-11-5|+0
Step 5.2.3.2.2
Subtract 1 from 0.
-2-1-4|1-11-5|+0
-2-1-4|1-11-5|+0
-2-1-4|1-11-5|+0
Step 5.2.4
Evaluate |1-11-5|.
Tap for more steps...
Step 5.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2-1-4(1-5-1-1)+0
Step 5.2.4.2
Simplify the determinant.
Tap for more steps...
Step 5.2.4.2.1
Simplify each term.
Tap for more steps...
Step 5.2.4.2.1.1
Multiply -5 by 1.
-2-1-4(-5-1-1)+0
Step 5.2.4.2.1.2
Multiply -1 by -1.
-2-1-4(-5+1)+0
-2-1-4(-5+1)+0
Step 5.2.4.2.2
Add -5 and 1.
-2-1-4-4+0
-2-1-4-4+0
-2-1-4-4+0
Step 5.2.5
Simplify the determinant.
Tap for more steps...
Step 5.2.5.1
Simplify each term.
Tap for more steps...
Step 5.2.5.1.1
Multiply -2 by -1.
2-4-4+0
Step 5.2.5.1.2
Multiply -4 by -4.
2+16+0
2+16+0
Step 5.2.5.2
Add 2 and 16.
18+0
Step 5.2.5.3
Add 18 and 0.
18
18
Dx=18
Step 5.3
Use the formula to solve for x.
x=DxD
Step 5.4
Substitute -9 for D and 18 for Dx in the formula.
x=18-9
Step 5.5
Divide 18 by -9.
x=-2
x=-2
Step 6
Find the value of y by Cramer's Rule, which states that y=DyD.
Tap for more steps...
Step 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [-240].
|-3-2-1-34100-5|
Step 6.2
Find the determinant.
Tap for more steps...
Step 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Tap for more steps...
Step 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|-2-141|
Step 6.2.1.4
Multiply element a31 by its cofactor.
0|-2-141|
Step 6.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-1-31|
Step 6.2.1.6
Multiply element a32 by its cofactor.
0|-3-1-31|
Step 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-3-2-34|
Step 6.2.1.8
Multiply element a33 by its cofactor.
-5|-3-2-34|
Step 6.2.1.9
Add the terms together.
0|-2-141|+0|-3-1-31|-5|-3-2-34|
0|-2-141|+0|-3-1-31|-5|-3-2-34|
Step 6.2.2
Multiply 0 by |-2-141|.
0+0|-3-1-31|-5|-3-2-34|
Step 6.2.3
Multiply 0 by |-3-1-31|.
0+0-5|-3-2-34|
Step 6.2.4
Evaluate |-3-2-34|.
Tap for more steps...
Step 6.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0+0-5(-34-(-3-2))
Step 6.2.4.2
Simplify the determinant.
Tap for more steps...
Step 6.2.4.2.1
Simplify each term.
Tap for more steps...
Step 6.2.4.2.1.1
Multiply -3 by 4.
0+0-5(-12-(-3-2))
Step 6.2.4.2.1.2
Multiply -(-3-2).
Tap for more steps...
Step 6.2.4.2.1.2.1
Multiply -3 by -2.
0+0-5(-12-16)
Step 6.2.4.2.1.2.2
Multiply -1 by 6.
0+0-5(-12-6)
0+0-5(-12-6)
0+0-5(-12-6)
Step 6.2.4.2.2
Subtract 6 from -12.
0+0-5-18
0+0-5-18
0+0-5-18
Step 6.2.5
Simplify the determinant.
Tap for more steps...
Step 6.2.5.1
Multiply -5 by -18.
0+0+90
Step 6.2.5.2
Add 0 and 0.
0+90
Step 6.2.5.3
Add 0 and 90.
90
90
Dy=90
Step 6.3
Use the formula to solve for y.
y=DyD
Step 6.4
Substitute -9 for D and 90 for Dy in the formula.
y=90-9
Step 6.5
Divide 90 by -9.
y=-10
y=-10
Step 7
Find the value of z by Cramer's Rule, which states that z=DzD.
Tap for more steps...
Step 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [-240].
|-31-2-304010|
Step 7.2
Find the determinant.
Tap for more steps...
Step 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Tap for more steps...
Step 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-204|
Step 7.2.1.4
Multiply element a31 by its cofactor.
0|1-204|
Step 7.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-2-34|
Step 7.2.1.6
Multiply element a32 by its cofactor.
-1|-3-2-34|
Step 7.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-31-30|
Step 7.2.1.8
Multiply element a33 by its cofactor.
0|-31-30|
Step 7.2.1.9
Add the terms together.
0|1-204|-1|-3-2-34|+0|-31-30|
0|1-204|-1|-3-2-34|+0|-31-30|
Step 7.2.2
Multiply 0 by |1-204|.
0-1|-3-2-34|+0|-31-30|
Step 7.2.3
Multiply 0 by |-31-30|.
0-1|-3-2-34|+0
Step 7.2.4
Evaluate |-3-2-34|.
Tap for more steps...
Step 7.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1(-34-(-3-2))+0
Step 7.2.4.2
Simplify the determinant.
Tap for more steps...
Step 7.2.4.2.1
Simplify each term.
Tap for more steps...
Step 7.2.4.2.1.1
Multiply -3 by 4.
0-1(-12-(-3-2))+0
Step 7.2.4.2.1.2
Multiply -(-3-2).
Tap for more steps...
Step 7.2.4.2.1.2.1
Multiply -3 by -2.
0-1(-12-16)+0
Step 7.2.4.2.1.2.2
Multiply -1 by 6.
0-1(-12-6)+0
0-1(-12-6)+0
0-1(-12-6)+0
Step 7.2.4.2.2
Subtract 6 from -12.
0-1-18+0
0-1-18+0
0-1-18+0
Step 7.2.5
Simplify the determinant.
Tap for more steps...
Step 7.2.5.1
Multiply -1 by -18.
0+18+0
Step 7.2.5.2
Add 0 and 18.
18+0
Step 7.2.5.3
Add 18 and 0.
18
18
Dz=18
Step 7.3
Use the formula to solve for z.
z=DzD
Step 7.4
Substitute -9 for D and 18 for Dz in the formula.
z=18-9
Step 7.5
Divide 18 by -9.
z=-2
z=-2
Step 8
List the solution to the system of equations.
x=-2
y=-10
z=-2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay