Finite Math Examples
y=3x+z-2 , z=3x+4 , y=5z
Step 1
Step 1.1
Move all terms containing variables to the left side of the equation.
Step 1.1.1
Subtract 3x from both sides of the equation.
y-3x=z-2
z=3x+4
y=5z
Step 1.1.2
Subtract z from both sides of the equation.
y-3x-z=-2
z=3x+4
y=5z
y-3x-z=-2
z=3x+4
y=5z
Step 1.2
Reorder y and -3x.
-3x+y-z=-2
z=3x+4
y=5z
Step 1.3
Subtract 3x from both sides of the equation.
-3x+y-z=-2
z-3x=4
y=5z
Step 1.4
Reorder z and -3x.
-3x+y-z=-2
-3x+z=4
y=5z
Step 1.5
Subtract 5z from both sides of the equation.
-3x+y-z=-2
-3x+z=4
y-5z=0
-3x+y-z=-2
-3x+z=4
y-5z=0
Step 2
Represent the system of equations in matrix format.
[-31-1-30101-5][xyz]=[-240]
Step 3
Step 3.1
Write [-31-1-30101-5] in determinant notation.
|-31-1-30101-5|
Step 3.2
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.2.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
Step 3.2.4
Multiply element a11 by its cofactor.
-3|011-5|
Step 3.2.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
Step 3.2.6
Multiply element a21 by its cofactor.
3|1-11-5|
Step 3.2.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 3.2.8
Multiply element a31 by its cofactor.
0|1-101|
Step 3.2.9
Add the terms together.
-3|011-5|+3|1-11-5|+0|1-101|
-3|011-5|+3|1-11-5|+0|1-101|
Step 3.3
Multiply 0 by |1-101|.
-3|011-5|+3|1-11-5|+0
Step 3.4
Evaluate |011-5|.
Step 3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3(0⋅-5-1⋅1)+3|1-11-5|+0
Step 3.4.2
Simplify the determinant.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Multiply 0 by -5.
-3(0-1⋅1)+3|1-11-5|+0
Step 3.4.2.1.2
Multiply -1 by 1.
-3(0-1)+3|1-11-5|+0
-3(0-1)+3|1-11-5|+0
Step 3.4.2.2
Subtract 1 from 0.
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
-3⋅-1+3|1-11-5|+0
Step 3.5
Evaluate |1-11-5|.
Step 3.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3⋅-1+3(1⋅-5-1⋅-1)+0
Step 3.5.2
Simplify the determinant.
Step 3.5.2.1
Simplify each term.
Step 3.5.2.1.1
Multiply -5 by 1.
-3⋅-1+3(-5-1⋅-1)+0
Step 3.5.2.1.2
Multiply -1 by -1.
-3⋅-1+3(-5+1)+0
-3⋅-1+3(-5+1)+0
Step 3.5.2.2
Add -5 and 1.
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
-3⋅-1+3⋅-4+0
Step 3.6
Simplify the determinant.
Step 3.6.1
Simplify each term.
Step 3.6.1.1
Multiply -3 by -1.
3+3⋅-4+0
Step 3.6.1.2
Multiply 3 by -4.
3-12+0
3-12+0
Step 3.6.2
Subtract 12 from 3.
-9+0
Step 3.6.3
Add -9 and 0.
-9
-9
D=-9
Step 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 1 of the coefficient matrix that corresponds to the x-coefficients of the system with [-240].
|-21-140101-5|
Step 5.2
Find the determinant.
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|011-5|
Step 5.2.1.4
Multiply element a11 by its cofactor.
-2|011-5|
Step 5.2.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|1-11-5|
Step 5.2.1.6
Multiply element a21 by its cofactor.
-4|1-11-5|
Step 5.2.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-101|
Step 5.2.1.8
Multiply element a31 by its cofactor.
0|1-101|
Step 5.2.1.9
Add the terms together.
-2|011-5|-4|1-11-5|+0|1-101|
-2|011-5|-4|1-11-5|+0|1-101|
Step 5.2.2
Multiply 0 by |1-101|.
-2|011-5|-4|1-11-5|+0
Step 5.2.3
Evaluate |011-5|.
Step 5.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2(0⋅-5-1⋅1)-4|1-11-5|+0
Step 5.2.3.2
Simplify the determinant.
Step 5.2.3.2.1
Simplify each term.
Step 5.2.3.2.1.1
Multiply 0 by -5.
-2(0-1⋅1)-4|1-11-5|+0
Step 5.2.3.2.1.2
Multiply -1 by 1.
-2(0-1)-4|1-11-5|+0
-2(0-1)-4|1-11-5|+0
Step 5.2.3.2.2
Subtract 1 from 0.
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
-2⋅-1-4|1-11-5|+0
Step 5.2.4
Evaluate |1-11-5|.
Step 5.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-2⋅-1-4(1⋅-5-1⋅-1)+0
Step 5.2.4.2
Simplify the determinant.
Step 5.2.4.2.1
Simplify each term.
Step 5.2.4.2.1.1
Multiply -5 by 1.
-2⋅-1-4(-5-1⋅-1)+0
Step 5.2.4.2.1.2
Multiply -1 by -1.
-2⋅-1-4(-5+1)+0
-2⋅-1-4(-5+1)+0
Step 5.2.4.2.2
Add -5 and 1.
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
-2⋅-1-4⋅-4+0
Step 5.2.5
Simplify the determinant.
Step 5.2.5.1
Simplify each term.
Step 5.2.5.1.1
Multiply -2 by -1.
2-4⋅-4+0
Step 5.2.5.1.2
Multiply -4 by -4.
2+16+0
2+16+0
Step 5.2.5.2
Add 2 and 16.
18+0
Step 5.2.5.3
Add 18 and 0.
18
18
Dx=18
Step 5.3
Use the formula to solve for x.
x=DxD
Step 5.4
Substitute -9 for D and 18 for Dx in the formula.
x=18-9
Step 5.5
Divide 18 by -9.
x=-2
x=-2
Step 6
Step 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [-240].
|-3-2-1-34100-5|
Step 6.2
Find the determinant.
Step 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Step 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|-2-141|
Step 6.2.1.4
Multiply element a31 by its cofactor.
0|-2-141|
Step 6.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-1-31|
Step 6.2.1.6
Multiply element a32 by its cofactor.
0|-3-1-31|
Step 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-3-2-34|
Step 6.2.1.8
Multiply element a33 by its cofactor.
-5|-3-2-34|
Step 6.2.1.9
Add the terms together.
0|-2-141|+0|-3-1-31|-5|-3-2-34|
0|-2-141|+0|-3-1-31|-5|-3-2-34|
Step 6.2.2
Multiply 0 by |-2-141|.
0+0|-3-1-31|-5|-3-2-34|
Step 6.2.3
Multiply 0 by |-3-1-31|.
0+0-5|-3-2-34|
Step 6.2.4
Evaluate |-3-2-34|.
Step 6.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0+0-5(-3⋅4-(-3⋅-2))
Step 6.2.4.2
Simplify the determinant.
Step 6.2.4.2.1
Simplify each term.
Step 6.2.4.2.1.1
Multiply -3 by 4.
0+0-5(-12-(-3⋅-2))
Step 6.2.4.2.1.2
Multiply -(-3⋅-2).
Step 6.2.4.2.1.2.1
Multiply -3 by -2.
0+0-5(-12-1⋅6)
Step 6.2.4.2.1.2.2
Multiply -1 by 6.
0+0-5(-12-6)
0+0-5(-12-6)
0+0-5(-12-6)
Step 6.2.4.2.2
Subtract 6 from -12.
0+0-5⋅-18
0+0-5⋅-18
0+0-5⋅-18
Step 6.2.5
Simplify the determinant.
Step 6.2.5.1
Multiply -5 by -18.
0+0+90
Step 6.2.5.2
Add 0 and 0.
0+90
Step 6.2.5.3
Add 0 and 90.
90
90
Dy=90
Step 6.3
Use the formula to solve for y.
y=DyD
Step 6.4
Substitute -9 for D and 90 for Dy in the formula.
y=90-9
Step 6.5
Divide 90 by -9.
y=-10
y=-10
Step 7
Step 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [-240].
|-31-2-304010|
Step 7.2
Find the determinant.
Step 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
Step 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1-204|
Step 7.2.1.4
Multiply element a31 by its cofactor.
0|1-204|
Step 7.2.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-3-2-34|
Step 7.2.1.6
Multiply element a32 by its cofactor.
-1|-3-2-34|
Step 7.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-31-30|
Step 7.2.1.8
Multiply element a33 by its cofactor.
0|-31-30|
Step 7.2.1.9
Add the terms together.
0|1-204|-1|-3-2-34|+0|-31-30|
0|1-204|-1|-3-2-34|+0|-31-30|
Step 7.2.2
Multiply 0 by |1-204|.
0-1|-3-2-34|+0|-31-30|
Step 7.2.3
Multiply 0 by |-31-30|.
0-1|-3-2-34|+0
Step 7.2.4
Evaluate |-3-2-34|.
Step 7.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-1(-3⋅4-(-3⋅-2))+0
Step 7.2.4.2
Simplify the determinant.
Step 7.2.4.2.1
Simplify each term.
Step 7.2.4.2.1.1
Multiply -3 by 4.
0-1(-12-(-3⋅-2))+0
Step 7.2.4.2.1.2
Multiply -(-3⋅-2).
Step 7.2.4.2.1.2.1
Multiply -3 by -2.
0-1(-12-1⋅6)+0
Step 7.2.4.2.1.2.2
Multiply -1 by 6.
0-1(-12-6)+0
0-1(-12-6)+0
0-1(-12-6)+0
Step 7.2.4.2.2
Subtract 6 from -12.
0-1⋅-18+0
0-1⋅-18+0
0-1⋅-18+0
Step 7.2.5
Simplify the determinant.
Step 7.2.5.1
Multiply -1 by -18.
0+18+0
Step 7.2.5.2
Add 0 and 18.
18+0
Step 7.2.5.3
Add 18 and 0.
18
18
Dz=18
Step 7.3
Use the formula to solve for z.
z=DzD
Step 7.4
Substitute -9 for D and 18 for Dz in the formula.
z=18-9
Step 7.5
Divide 18 by -9.
z=-2
z=-2
Step 8
List the solution to the system of equations.
x=-2
y=-10
z=-2