Finite Math Examples

Find the Probability P(x<3) of the Binomial Distribution
x<3x<3 , n=3n=3 , p=0.4p=0.4
Step 1
Subtract 0.40.4 from 11.
0.60.6
Step 2
When the value of the number of successes xx is given as an interval, then the probability of xx is the sum of the probabilities of all possible xx values between 00 and nn. In this case, p(x<3)=P(x=0)+P(x=1)+P(x=2)p(x<3)=P(x=0)+P(x=1)+P(x=2).
p(x<3)=P(x=0)+P(x=1)+P(x=2)p(x<3)=P(x=0)+P(x=1)+P(x=2)
Step 3
Find the probability of p(0)p(0).
Tap for more steps...
Step 3.1
Use the formula for the probability of a binomial distribution to solve the problem.
p(x)=C03pxqn-xp(x)=3C0pxqnx
Step 3.2
Find the value of C033C0.
Tap for more steps...
Step 3.2.1
Find the number of possible unordered combinations when rr items are selected from nn available items.
C03=Crn=n!(r)!(n-r)!3C0=nCr=n!(r)!(nr)!
Step 3.2.2
Fill in the known values.
(3)!(0)!(3-0)!(3)!(0)!(30)!
Step 3.2.3
Simplify.
Tap for more steps...
Step 3.2.3.1
Simplify the numerator.
Tap for more steps...
Step 3.2.3.1.1
Expand (3)!(3)! to 321321.
321(0)!(3-0)!321(0)!(30)!
Step 3.2.3.1.2
Multiply 321321.
Tap for more steps...
Step 3.2.3.1.2.1
Multiply 33 by 22.
61(0)!(3-0)!61(0)!(30)!
Step 3.2.3.1.2.2
Multiply 66 by 11.
6(0)!(3-0)!6(0)!(30)!
6(0)!(3-0)!6(0)!(30)!
6(0)!(3-0)!6(0)!(30)!
Step 3.2.3.2
Simplify the denominator.
Tap for more steps...
Step 3.2.3.2.1
Expand (0)!(0)! to 11.
61(3-0)!61(30)!
Step 3.2.3.2.2
Subtract 00 from 33.
61(3)!61(3)!
Step 3.2.3.2.3
Expand (3)!(3)! to 321321.
61(321)61(321)
Step 3.2.3.2.4
Multiply 321321.
Tap for more steps...
Step 3.2.3.2.4.1
Multiply 33 by 22.
61(61)61(61)
Step 3.2.3.2.4.2
Multiply 66 by 11.
616616
616616
Step 3.2.3.2.5
Multiply 66 by 11.
6666
6666
Step 3.2.3.3
Divide 66 by 66.
11
11
11
Step 3.3
Fill the known values into the equation.
1(0.4)0(1-0.4)3-01(0.4)0(10.4)30
Step 3.4
Simplify the result.
Tap for more steps...
Step 3.4.1
Multiply (0.4)0(0.4)0 by 11.
(0.4)0(1-0.4)3-0(0.4)0(10.4)30
Step 3.4.2
Anything raised to 00 is 11.
1(1-0.4)3-01(10.4)30
Step 3.4.3
Multiply (1-0.4)3-0(10.4)30 by 11.
(1-0.4)3-0(10.4)30
Step 3.4.4
Subtract 0.40.4 from 11.
0.63-00.630
Step 3.4.5
Subtract 00 from 33.
0.630.63
Step 3.4.6
Raise 0.60.6 to the power of 33.
0.2160.216
0.2160.216
0.2160.216
Step 4
Find the probability of p(1)p(1).
Tap for more steps...
Step 4.1
Use the formula for the probability of a binomial distribution to solve the problem.
p(x)=C13pxqn-xp(x)=3C1pxqnx
Step 4.2
Find the value of C133C1.
Tap for more steps...
Step 4.2.1
Find the number of possible unordered combinations when rr items are selected from nn available items.
C13=Crn=n!(r)!(n-r)!3C1=nCr=n!(r)!(nr)!
Step 4.2.2
Fill in the known values.
(3)!(1)!(3-1)!(3)!(1)!(31)!
Step 4.2.3
Simplify.
Tap for more steps...
Step 4.2.3.1
Subtract 11 from 33.
(3)!(1)!(2)!(3)!(1)!(2)!
Step 4.2.3.2
Rewrite (3)!(3)! as 32!32!.
32!(1)!(2)!32!(1)!(2)!
Step 4.2.3.3
Cancel the common factor of 2!2!.
Tap for more steps...
Step 4.2.3.3.1
Cancel the common factor.
32!(1)!(2)!
Step 4.2.3.3.2
Rewrite the expression.
3(1)!
3(1)!
Step 4.2.3.4
Expand (1)! to 1.
31
Step 4.2.3.5
Divide 3 by 1.
3
3
3
Step 4.3
Fill the known values into the equation.
3(0.4)(1-0.4)3-1
Step 4.4
Simplify the result.
Tap for more steps...
Step 4.4.1
Evaluate the exponent.
30.4(1-0.4)3-1
Step 4.4.2
Multiply 3 by 0.4.
1.2(1-0.4)3-1
Step 4.4.3
Subtract 0.4 from 1.
1.20.63-1
Step 4.4.4
Subtract 1 from 3.
1.20.62
Step 4.4.5
Raise 0.6 to the power of 2.
1.20.36
Step 4.4.6
Multiply 1.2 by 0.36.
0.432
0.432
0.432
Step 5
Find the probability of p(2).
Tap for more steps...
Step 5.1
Use the formula for the probability of a binomial distribution to solve the problem.
p(x)=C23pxqn-x
Step 5.2
Find the value of C23.
Tap for more steps...
Step 5.2.1
Find the number of possible unordered combinations when r items are selected from n available items.
C23=Crn=n!(r)!(n-r)!
Step 5.2.2
Fill in the known values.
(3)!(2)!(3-2)!
Step 5.2.3
Simplify.
Tap for more steps...
Step 5.2.3.1
Subtract 2 from 3.
(3)!(2)!(1)!
Step 5.2.3.2
Rewrite (3)! as 32!.
32!(2)!(1)!
Step 5.2.3.3
Cancel the common factor of 2!.
Tap for more steps...
Step 5.2.3.3.1
Cancel the common factor.
32!(2)!(1)!
Step 5.2.3.3.2
Rewrite the expression.
3(1)!
3(1)!
Step 5.2.3.4
Expand (1)! to 1.
31
Step 5.2.3.5
Divide 3 by 1.
3
3
3
Step 5.3
Fill the known values into the equation.
3(0.4)2(1-0.4)3-2
Step 5.4
Simplify the result.
Tap for more steps...
Step 5.4.1
Raise 0.4 to the power of 2.
30.16(1-0.4)3-2
Step 5.4.2
Multiply 3 by 0.16.
0.48(1-0.4)3-2
Step 5.4.3
Subtract 0.4 from 1.
0.480.63-2
Step 5.4.4
Subtract 2 from 3.
0.480.61
Step 5.4.5
Evaluate the exponent.
0.480.6
Step 5.4.6
Multiply 0.48 by 0.6.
0.288
0.288
0.288
Step 6
The probability P(x<3) is the sum of the probabilities of all possible x values between 0 and n. P(x<3)=P(x=0)+P(x=1)+P(x=2)=0.216+0.432+0.288=0.936.
Tap for more steps...
Step 6.1
Add 0.216 and 0.432.
p(x<3)=0.648+0.288
Step 6.2
Add 0.648 and 0.288.
p(x<3)=0.936
p(x<3)=0.936
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay