Finite Math Examples
[2031][2031]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
2⋅1-3⋅02⋅1−3⋅0
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 22 by 11.
2-3⋅02−3⋅0
Step 2.2.1.2
Multiply -3−3 by 00.
2+02+0
2+02+0
Step 2.2.2
Add 22 and 00.
22
22
22
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
12[10-32]12[10−32]
Step 5
Multiply 1212 by each element of the matrix.
[12⋅112⋅012⋅-312⋅2][12⋅112⋅012⋅−312⋅2]
Step 6
Step 6.1
Multiply 1212 by 11.
[1212⋅012⋅-312⋅2][1212⋅012⋅−312⋅2]
Step 6.2
Multiply 1212 by 00.
[12012⋅-312⋅2][12012⋅−312⋅2]
Step 6.3
Combine 1212 and -3−3.
[120-3212⋅2][120−3212⋅2]
Step 6.4
Move the negative in front of the fraction.
[120-3212⋅2][120−3212⋅2]
Step 6.5
Cancel the common factor of 22.
Step 6.5.1
Cancel the common factor.
[120-3212⋅2]
Step 6.5.2
Rewrite the expression.
[120-321]
[120-321]
[120-321]