Finite Math Examples

[1450021325411502]
Step 1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|213541502|
Step 1.4
Multiply element a11 by its cofactor.
1|213541502|
Step 1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|013241102|
Step 1.6
Multiply element a12 by its cofactor.
-4|013241102|
Step 1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|023251152|
Step 1.8
Multiply element a13 by its cofactor.
5|023251152|
Step 1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|021254150|
Step 1.10
Multiply element a14 by its cofactor.
0|021254150|
Step 1.11
Add the terms together.
1|213541502|-4|013241102|+5|023251152|+0|021254150|
1|213541502|-4|013241102|+5|023251152|+0|021254150|
Step 2
Multiply 0 by |021254150|.
1|213541502|-4|013241102|+5|023251152|+0
Step 3
Evaluate |213541502|.
Tap for more steps...
Step 3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Tap for more steps...
Step 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|5152|
Step 3.1.4
Multiply element a12 by its cofactor.
-1|5152|
Step 3.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|2352|
Step 3.1.6
Multiply element a22 by its cofactor.
4|2352|
Step 3.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|2351|
Step 3.1.8
Multiply element a32 by its cofactor.
0|2351|
Step 3.1.9
Add the terms together.
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+0
1(-1|5152|+4|2352|+0|2351|)-4|013241102|+5|023251152|+0
Step 3.2
Multiply 0 by |2351|.
1(-1|5152|+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.3
Evaluate |5152|.
Tap for more steps...
Step 3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-1(52-51)+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.3.2
Simplify the determinant.
Tap for more steps...
Step 3.3.2.1
Simplify each term.
Tap for more steps...
Step 3.3.2.1.1
Multiply 5 by 2.
1(-1(10-51)+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.3.2.1.2
Multiply -5 by 1.
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+0
1(-1(10-5)+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.3.2.2
Subtract 5 from 10.
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
1(-15+4|2352|+0)-4|013241102|+5|023251152|+0
Step 3.4
Evaluate |2352|.
Tap for more steps...
Step 3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-15+4(22-53)+0)-4|013241102|+5|023251152|+0
Step 3.4.2
Simplify the determinant.
Tap for more steps...
Step 3.4.2.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1
Multiply 2 by 2.
1(-15+4(4-53)+0)-4|013241102|+5|023251152|+0
Step 3.4.2.1.2
Multiply -5 by 3.
1(-15+4(4-15)+0)-4|013241102|+5|023251152|+0
1(-15+4(4-15)+0)-4|013241102|+5|023251152|+0
Step 3.4.2.2
Subtract 15 from 4.
1(-15+4-11+0)-4|013241102|+5|023251152|+0
1(-15+4-11+0)-4|013241102|+5|023251152|+0
1(-15+4-11+0)-4|013241102|+5|023251152|+0
Step 3.5
Simplify the determinant.
Tap for more steps...
Step 3.5.1
Simplify each term.
Tap for more steps...
Step 3.5.1.1
Multiply -1 by 5.
1(-5+4-11+0)-4|013241102|+5|023251152|+0
Step 3.5.1.2
Multiply 4 by -11.
1(-5-44+0)-4|013241102|+5|023251152|+0
1(-5-44+0)-4|013241102|+5|023251152|+0
Step 3.5.2
Subtract 44 from -5.
1(-49+0)-4|013241102|+5|023251152|+0
Step 3.5.3
Add -49 and 0.
1-49-4|013241102|+5|023251152|+0
1-49-4|013241102|+5|023251152|+0
1-49-4|013241102|+5|023251152|+0
Step 4
Evaluate |013241102|.
Tap for more steps...
Step 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|4102|
Step 4.1.4
Multiply element a11 by its cofactor.
0|4102|
Step 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Step 4.1.6
Multiply element a12 by its cofactor.
-1|2112|
Step 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2410|
Step 4.1.8
Multiply element a13 by its cofactor.
3|2410|
Step 4.1.9
Add the terms together.
1-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
1-49-4(0|4102|-1|2112|+3|2410|)+5|023251152|+0
Step 4.2
Multiply 0 by |4102|.
1-49-4(0-1|2112|+3|2410|)+5|023251152|+0
Step 4.3
Evaluate |2112|.
Tap for more steps...
Step 4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4(0-1(22-11)+3|2410|)+5|023251152|+0
Step 4.3.2
Simplify the determinant.
Tap for more steps...
Step 4.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.2.1.1
Multiply 2 by 2.
1-49-4(0-1(4-11)+3|2410|)+5|023251152|+0
Step 4.3.2.1.2
Multiply -1 by 1.
1-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
1-49-4(0-1(4-1)+3|2410|)+5|023251152|+0
Step 4.3.2.2
Subtract 1 from 4.
1-49-4(0-13+3|2410|)+5|023251152|+0
1-49-4(0-13+3|2410|)+5|023251152|+0
1-49-4(0-13+3|2410|)+5|023251152|+0
Step 4.4
Evaluate |2410|.
Tap for more steps...
Step 4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4(0-13+3(20-14))+5|023251152|+0
Step 4.4.2
Simplify the determinant.
Tap for more steps...
Step 4.4.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.1.1
Multiply 2 by 0.
1-49-4(0-13+3(0-14))+5|023251152|+0
Step 4.4.2.1.2
Multiply -1 by 4.
1-49-4(0-13+3(0-4))+5|023251152|+0
1-49-4(0-13+3(0-4))+5|023251152|+0
Step 4.4.2.2
Subtract 4 from 0.
1-49-4(0-13+3-4)+5|023251152|+0
1-49-4(0-13+3-4)+5|023251152|+0
1-49-4(0-13+3-4)+5|023251152|+0
Step 4.5
Simplify the determinant.
Tap for more steps...
Step 4.5.1
Simplify each term.
Tap for more steps...
Step 4.5.1.1
Multiply -1 by 3.
1-49-4(0-3+3-4)+5|023251152|+0
Step 4.5.1.2
Multiply 3 by -4.
1-49-4(0-3-12)+5|023251152|+0
1-49-4(0-3-12)+5|023251152|+0
Step 4.5.2
Subtract 3 from 0.
1-49-4(-3-12)+5|023251152|+0
Step 4.5.3
Subtract 12 from -3.
1-49-4-15+5|023251152|+0
1-49-4-15+5|023251152|+0
1-49-4-15+5|023251152|+0
Step 5
Evaluate |023251152|.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5152|
Step 5.1.4
Multiply element a11 by its cofactor.
0|5152|
Step 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2112|
Step 5.1.6
Multiply element a12 by its cofactor.
-2|2112|
Step 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2515|
Step 5.1.8
Multiply element a13 by its cofactor.
3|2515|
Step 5.1.9
Add the terms together.
1-49-4-15+5(0|5152|-2|2112|+3|2515|)+0
1-49-4-15+5(0|5152|-2|2112|+3|2515|)+0
Step 5.2
Multiply 0 by |5152|.
1-49-4-15+5(0-2|2112|+3|2515|)+0
Step 5.3
Evaluate |2112|.
Tap for more steps...
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4-15+5(0-2(22-11)+3|2515|)+0
Step 5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.1
Multiply 2 by 2.
1-49-4-15+5(0-2(4-11)+3|2515|)+0
Step 5.3.2.1.2
Multiply -1 by 1.
1-49-4-15+5(0-2(4-1)+3|2515|)+0
1-49-4-15+5(0-2(4-1)+3|2515|)+0
Step 5.3.2.2
Subtract 1 from 4.
1-49-4-15+5(0-23+3|2515|)+0
1-49-4-15+5(0-23+3|2515|)+0
1-49-4-15+5(0-23+3|2515|)+0
Step 5.4
Evaluate |2515|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1-49-4-15+5(0-23+3(25-15))+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Multiply 2 by 5.
1-49-4-15+5(0-23+3(10-15))+0
Step 5.4.2.1.2
Multiply -1 by 5.
1-49-4-15+5(0-23+3(10-5))+0
1-49-4-15+5(0-23+3(10-5))+0
Step 5.4.2.2
Subtract 5 from 10.
1-49-4-15+5(0-23+35)+0
1-49-4-15+5(0-23+35)+0
1-49-4-15+5(0-23+35)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Simplify each term.
Tap for more steps...
Step 5.5.1.1
Multiply -2 by 3.
1-49-4-15+5(0-6+35)+0
Step 5.5.1.2
Multiply 3 by 5.
1-49-4-15+5(0-6+15)+0
1-49-4-15+5(0-6+15)+0
Step 5.5.2
Subtract 6 from 0.
1-49-4-15+5(-6+15)+0
Step 5.5.3
Add -6 and 15.
1-49-4-15+59+0
1-49-4-15+59+0
1-49-4-15+59+0
Step 6
Simplify the determinant.
Tap for more steps...
Step 6.1
Simplify each term.
Tap for more steps...
Step 6.1.1
Multiply -49 by 1.
-49-4-15+59+0
Step 6.1.2
Multiply -4 by -15.
-49+60+59+0
Step 6.1.3
Multiply 5 by 9.
-49+60+45+0
-49+60+45+0
Step 6.2
Add -49 and 60.
11+45+0
Step 6.3
Add 11 and 45.
56+0
Step 6.4
Add 56 and 0.
56
56
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay