Finite Math Examples
⎡⎢⎣321444123⎤⎥⎦
Step 1
Consider the corresponding sign chart.
⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11.
Step 2.1.1
The minor for a11 is the determinant with row 1 and column 1 deleted.
∣∣∣4423∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a11=4⋅3−2⋅4
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 4 by 3.
a11=12−2⋅4
Step 2.1.2.2.1.2
Multiply −2 by 4.
a11=12−8
a11=12−8
Step 2.1.2.2.2
Subtract 8 from 12.
a11=4
a11=4
a11=4
a11=4
Step 2.2
Calculate the minor for element a12.
Step 2.2.1
The minor for a12 is the determinant with row 1 and column 2 deleted.
∣∣∣4413∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a12=4⋅3−1⋅4
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 4 by 3.
a12=12−1⋅4
Step 2.2.2.2.1.2
Multiply −1 by 4.
a12=12−4
a12=12−4
Step 2.2.2.2.2
Subtract 4 from 12.
a12=8
a12=8
a12=8
a12=8
Step 2.3
Calculate the minor for element a13.
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
∣∣∣4412∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a13=4⋅2−1⋅4
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 4 by 2.
a13=8−1⋅4
Step 2.3.2.2.1.2
Multiply −1 by 4.
a13=8−4
a13=8−4
Step 2.3.2.2.2
Subtract 4 from 8.
a13=4
a13=4
a13=4
a13=4
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
∣∣∣2123∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a21=2⋅3−2⋅1
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 3.
a21=6−2⋅1
Step 2.4.2.2.1.2
Multiply −2 by 1.
a21=6−2
a21=6−2
Step 2.4.2.2.2
Subtract 2 from 6.
a21=4
a21=4
a21=4
a21=4
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
∣∣∣3113∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a22=3⋅3−1⋅1
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 3 by 3.
a22=9−1⋅1
Step 2.5.2.2.1.2
Multiply −1 by 1.
a22=9−1
a22=9−1
Step 2.5.2.2.2
Subtract 1 from 9.
a22=8
a22=8
a22=8
a22=8
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
∣∣∣3212∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a23=3⋅2−1⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 3 by 2.
a23=6−1⋅2
Step 2.6.2.2.1.2
Multiply −1 by 2.
a23=6−2
a23=6−2
Step 2.6.2.2.2
Subtract 2 from 6.
a23=4
a23=4
a23=4
a23=4
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
∣∣∣2144∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a31=2⋅4−4⋅1
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 4.
a31=8−4⋅1
Step 2.7.2.2.1.2
Multiply −4 by 1.
a31=8−4
a31=8−4
Step 2.7.2.2.2
Subtract 4 from 8.
a31=4
a31=4
a31=4
a31=4
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
∣∣∣3144∣∣∣
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a32=3⋅4−4⋅1
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 3 by 4.
a32=12−4⋅1
Step 2.8.2.2.1.2
Multiply −4 by 1.
a32=12−4
a32=12−4
Step 2.8.2.2.2
Subtract 4 from 12.
a32=8
a32=8
a32=8
a32=8
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
∣∣∣3244∣∣∣
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula ∣∣∣abcd∣∣∣=ad−cb.
a33=3⋅4−4⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 3 by 4.
a33=12−4⋅2
Step 2.9.2.2.1.2
Multiply −4 by 2.
a33=12−8
a33=12−8
Step 2.9.2.2.2
Subtract 8 from 12.
a33=4
a33=4
a33=4
a33=4
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the − positions on the sign chart.
⎡⎢⎣4−84−48−44−84⎤⎥⎦
⎡⎢⎣4−84−48−44−84⎤⎥⎦