Finite Math Examples
[32-11632-40]⎡⎢⎣32−11632−40⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|63-40|∣∣∣63−40∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=6⋅0-(-4⋅3)a11=6⋅0−(−4⋅3)
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 66 by 00.
a11=0-(-4⋅3)a11=0−(−4⋅3)
Step 2.1.2.2.1.2
Multiply -(-4⋅3)−(−4⋅3).
Step 2.1.2.2.1.2.1
Multiply -4−4 by 33.
a11=0--12a11=0−−12
Step 2.1.2.2.1.2.2
Multiply -1−1 by -12−12.
a11=0+12a11=0+12
a11=0+12a11=0+12
a11=0+12a11=0+12
Step 2.1.2.2.2
Add 00 and 1212.
a11=12a11=12
a11=12a11=12
a11=12a11=12
a11=12a11=12
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1320|∣∣∣1320∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=1⋅0-2⋅3a12=1⋅0−2⋅3
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 00 by 11.
a12=0-2⋅3a12=0−2⋅3
Step 2.2.2.2.1.2
Multiply -2−2 by 33.
a12=0-6a12=0−6
a12=0-6a12=0−6
Step 2.2.2.2.2
Subtract 66 from 00.
a12=-6a12=−6
a12=-6a12=−6
a12=-6a12=−6
a12=-6a12=−6
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|162-4|∣∣∣162−4∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=1⋅-4-2⋅6
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply -4 by 1.
a13=-4-2⋅6
Step 2.3.2.2.1.2
Multiply -2 by 6.
a13=-4-12
a13=-4-12
Step 2.3.2.2.2
Subtract 12 from -4.
a13=-16
a13=-16
a13=-16
a13=-16
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2-1-40|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=2⋅0-(-4⋅-1)
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 0.
a21=0-(-4⋅-1)
Step 2.4.2.2.1.2
Multiply -(-4⋅-1).
Step 2.4.2.2.1.2.1
Multiply -4 by -1.
a21=0-1⋅4
Step 2.4.2.2.1.2.2
Multiply -1 by 4.
a21=0-4
a21=0-4
a21=0-4
Step 2.4.2.2.2
Subtract 4 from 0.
a21=-4
a21=-4
a21=-4
a21=-4
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|3-120|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=3⋅0-2⋅-1
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 3 by 0.
a22=0-2⋅-1
Step 2.5.2.2.1.2
Multiply -2 by -1.
a22=0+2
a22=0+2
Step 2.5.2.2.2
Add 0 and 2.
a22=2
a22=2
a22=2
a22=2
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|322-4|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=3⋅-4-2⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 3 by -4.
a23=-12-2⋅2
Step 2.6.2.2.1.2
Multiply -2 by 2.
a23=-12-4
a23=-12-4
Step 2.6.2.2.2
Subtract 4 from -12.
a23=-16
a23=-16
a23=-16
a23=-16
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2-163|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=2⋅3-6⋅-1
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 3.
a31=6-6⋅-1
Step 2.7.2.2.1.2
Multiply -6 by -1.
a31=6+6
a31=6+6
Step 2.7.2.2.2
Add 6 and 6.
a31=12
a31=12
a31=12
a31=12
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|3-113|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=3⋅3-1⋅-1
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 3 by 3.
a32=9-1⋅-1
Step 2.8.2.2.1.2
Multiply -1 by -1.
a32=9+1
a32=9+1
Step 2.8.2.2.2
Add 9 and 1.
a32=10
a32=10
a32=10
a32=10
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|3216|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=3⋅6-1⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 3 by 6.
a33=18-1⋅2
Step 2.9.2.2.1.2
Multiply -1 by 2.
a33=18-2
a33=18-2
Step 2.9.2.2.2
Subtract 2 from 18.
a33=16
a33=16
a33=16
a33=16
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[126-16421612-1016]
[126-16421612-1016]
Step 3
Transpose the matrix by switching its rows to columns.
[1241262-10-161616]