Finite Math Examples

Find the Maximum/Minimum Value
f(x)=x2-4
Step 1
The minimum of a quadratic function occurs at x=-b2a. If a is positive, the minimum value of the function is f(-b2a).
fminx=ax2+bx+c occurs at x=-b2a
Step 2
Find the value of x=-b2a.
Tap for more steps...
Step 2.1
Substitute in the values of a and b.
x=-02(1)
Step 2.2
Remove parentheses.
x=-02(1)
Step 2.3
Simplify -02(1).
Tap for more steps...
Step 2.3.1
Cancel the common factor of 0 and 2.
Tap for more steps...
Step 2.3.1.1
Factor 2 out of 0.
x=-2(0)2(1)
Step 2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.1.2.1
Cancel the common factor.
x=-2021
Step 2.3.1.2.2
Rewrite the expression.
x=-01
Step 2.3.1.2.3
Divide 0 by 1.
x=-0
x=-0
x=-0
Step 2.3.2
Multiply -1 by 0.
x=0
x=0
x=0
Step 3
Evaluate f(0).
Tap for more steps...
Step 3.1
Replace the variable x with 0 in the expression.
f(0)=(0)2-4
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Raising 0 to any positive power yields 0.
f(0)=0-4
Step 3.2.2
Subtract 4 from 0.
f(0)=-4
Step 3.2.3
The final answer is -4.
-4
-4
-4
Step 4
Use the x and y values to find where the minimum occurs.
(0,-4)
Step 5
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]