Finite Math Examples
f(x)=5x2+6f(x)=5x2+6
Step 1
The minimum of a quadratic function occurs at x=-b2a. If a is positive, the minimum value of the function is f(-b2a).
fminx=ax2+bx+c occurs at x=-b2a
Step 2
Step 2.1
Substitute in the values of a and b.
x=-02(5)
Step 2.2
Remove parentheses.
x=-02(5)
Step 2.3
Simplify -02(5).
Step 2.3.1
Cancel the common factor of 0 and 2.
Step 2.3.1.1
Factor 2 out of 0.
x=-2(0)2(5)
Step 2.3.1.2
Cancel the common factors.
Step 2.3.1.2.1
Cancel the common factor.
x=-2⋅02⋅5
Step 2.3.1.2.2
Rewrite the expression.
x=-05
x=-05
x=-05
Step 2.3.2
Cancel the common factor of 0 and 5.
Step 2.3.2.1
Factor 5 out of 0.
x=-5(0)5
Step 2.3.2.2
Cancel the common factors.
Step 2.3.2.2.1
Factor 5 out of 5.
x=-5⋅05⋅1
Step 2.3.2.2.2
Cancel the common factor.
x=-5⋅05⋅1
Step 2.3.2.2.3
Rewrite the expression.
x=-01
Step 2.3.2.2.4
Divide 0 by 1.
x=-0
x=-0
x=-0
Step 2.3.3
Multiply -1 by 0.
x=0
x=0
x=0
Step 3
Step 3.1
Replace the variable x with 0 in the expression.
f(0)=5(0)2+6
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Raising 0 to any positive power yields 0.
f(0)=5⋅0+6
Step 3.2.1.2
Multiply 5 by 0.
f(0)=0+6
f(0)=0+6
Step 3.2.2
Add 0 and 6.
f(0)=6
Step 3.2.3
The final answer is 6.
6
6
6
Step 4
Use the x and y values to find where the minimum occurs.
(0,6)
Step 5