Finite Math Examples
f(x)=6-4xf(x)=6−4x
Step 1
Write f(x)=6-4xf(x)=6−4x as an equation.
y=6-4xy=6−4x
Step 2
Interchange the variables.
x=6-4yx=6−4y
Step 3
Step 3.1
Rewrite the equation as 6-4y=x6−4y=x.
6-4y=x6−4y=x
Step 3.2
Subtract 66 from both sides of the equation.
-4y=x-6−4y=x−6
Step 3.3
Divide each term in -4y=x-6−4y=x−6 by -4−4 and simplify.
Step 3.3.1
Divide each term in -4y=x-6−4y=x−6 by -4−4.
-4y-4=x-4+-6-4−4y−4=x−4+−6−4
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of -4−4.
Step 3.3.2.1.1
Cancel the common factor.
-4y-4=x-4+-6-4
Step 3.3.2.1.2
Divide y by 1.
y=x-4+-6-4
y=x-4+-6-4
y=x-4+-6-4
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Simplify each term.
Step 3.3.3.1.1
Move the negative in front of the fraction.
y=-x4+-6-4
Step 3.3.3.1.2
Cancel the common factor of -6 and -4.
Step 3.3.3.1.2.1
Factor -2 out of -6.
y=-x4+-2(3)-4
Step 3.3.3.1.2.2
Cancel the common factors.
Step 3.3.3.1.2.2.1
Factor -2 out of -4.
y=-x4+-2⋅3-2⋅2
Step 3.3.3.1.2.2.2
Cancel the common factor.
y=-x4+-2⋅3-2⋅2
Step 3.3.3.1.2.2.3
Rewrite the expression.
y=-x4+32
y=-x4+32
y=-x4+32
y=-x4+32
y=-x4+32
y=-x4+32
y=-x4+32
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=-x4+32
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(6-4x) by substituting in the value of f into f-1.
f-1(6-4x)=-6-4x4+32
Step 5.2.3
Simplify terms.
Step 5.2.3.1
Cancel the common factor of 6-4x and 4.
Step 5.2.3.1.1
Factor 2 out of 6.
f-1(6-4x)=-2(3)-4x4+32
Step 5.2.3.1.2
Factor 2 out of -4x.
f-1(6-4x)=-2(3)+2(-2x)4+32
Step 5.2.3.1.3
Factor 2 out of 2(3)+2(-2x).
f-1(6-4x)=-2(3-2x)4+32
Step 5.2.3.1.4
Cancel the common factors.
Step 5.2.3.1.4.1
Factor 2 out of 4.
f-1(6-4x)=-2(3-2x)2⋅2+32
Step 5.2.3.1.4.2
Cancel the common factor.
f-1(6-4x)=-2(3-2x)2⋅2+32
Step 5.2.3.1.4.3
Rewrite the expression.
f-1(6-4x)=-3-2x2+32
f-1(6-4x)=-3-2x2+32
f-1(6-4x)=-3-2x2+32
Step 5.2.3.2
Combine the numerators over the common denominator.
f-1(6-4x)=-(3-2x)+32
f-1(6-4x)=-(3-2x)+32
Step 5.2.4
Simplify each term.
Step 5.2.4.1
Apply the distributive property.
f-1(6-4x)=-1⋅3-(-2x)+32
Step 5.2.4.2
Multiply -1 by 3.
f-1(6-4x)=-3-(-2x)+32
Step 5.2.4.3
Multiply -2 by -1.
f-1(6-4x)=-3+2x+32
f-1(6-4x)=-3+2x+32
Step 5.2.5
Simplify terms.
Step 5.2.5.1
Combine the opposite terms in -3+2x+3.
Step 5.2.5.1.1
Add -3 and 3.
f-1(6-4x)=2x+02
Step 5.2.5.1.2
Add 2x and 0.
f-1(6-4x)=2x2
f-1(6-4x)=2x2
Step 5.2.5.2
Cancel the common factor of 2.
Step 5.2.5.2.1
Cancel the common factor.
f-1(6-4x)=2x2
Step 5.2.5.2.2
Divide x by 1.
f-1(6-4x)=x
f-1(6-4x)=x
f-1(6-4x)=x
f-1(6-4x)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(-x4+32) by substituting in the value of f-1 into f.
f(-x4+32)=6-4(-x4+32)
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the distributive property.
f(-x4+32)=6-4(-x4)-4(32)
Step 5.3.3.2
Cancel the common factor of 4.
Step 5.3.3.2.1
Move the leading negative in -x4 into the numerator.
f(-x4+32)=6-4-x4-4(32)
Step 5.3.3.2.2
Factor 4 out of -4.
f(-x4+32)=6+4(-1)(-x4)-4(32)
Step 5.3.3.2.3
Cancel the common factor.
f(-x4+32)=6+4⋅(-1-x4)-4(32)
Step 5.3.3.2.4
Rewrite the expression.
f(-x4+32)=6-1(-x)-4(32)
f(-x4+32)=6-1(-x)-4(32)
Step 5.3.3.3
Multiply -1 by -1.
f(-x4+32)=6+1x-4(32)
Step 5.3.3.4
Multiply x by 1.
f(-x4+32)=6+x-4(32)
Step 5.3.3.5
Cancel the common factor of 2.
Step 5.3.3.5.1
Factor 2 out of -4.
f(-x4+32)=6+x+2(-2)(32)
Step 5.3.3.5.2
Cancel the common factor.
f(-x4+32)=6+x+2⋅(-2(32))
Step 5.3.3.5.3
Rewrite the expression.
f(-x4+32)=6+x-2⋅3
f(-x4+32)=6+x-2⋅3
Step 5.3.3.6
Multiply -2 by 3.
f(-x4+32)=6+x-6
f(-x4+32)=6+x-6
Step 5.3.4
Combine the opposite terms in 6+x-6.
Step 5.3.4.1
Subtract 6 from 6.
f(-x4+32)=x+0
Step 5.3.4.2
Add x and 0.
f(-x4+32)=x
f(-x4+32)=x
f(-x4+32)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=-x4+32 is the inverse of f(x)=6-4x.
f-1(x)=-x4+32
f-1(x)=-x4+32