Finite Math Examples
ClassFrequency10-14115-19320-24925-292
Step 1
Step 1.1
The lower limit for every class is the smallest value in that class. On the other hand, the upper limit for every class is the greatest value in that class.
ClassFrequency(f)LowerLimitsUpperLimits10-141101415-193151920-249202425-2922529
Step 1.2
The class midpoint is the lower class limit plus the upper class limit divided by 2.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)10-141101410+14215-193151915+19220-249202420+24225-292252925+292
Step 1.3
Simplify all the midpoint column.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)10-14110141215-19315191720-24920242225-292252927
Step 1.4
Add the midpoints column to the original table.
ClassFrequency(f)Midpoint(M)10-1411215-1931720-2492225-29227
ClassFrequency(f)Midpoint(M)10-1411215-1931720-2492225-29227
Step 2
Calculate the square of each group midpoint M2.
ClassFrequency(f)Midpoint(M)M210-1411212215-1931717220-2492222225-29227272
Step 3
Simplify the M2 column.
ClassFrequency(f)Midpoint(M)M210-1411214415-1931728920-2492248425-29227729
Step 4
Multiply each midpoint squared by its frequency f.
ClassFrequency(f)Midpoint(M)M2f⋅M210-141121441⋅14415-193172893⋅28920-249224849⋅48425-292277292⋅729
Step 5
Simplify the f⋅M2 column.
ClassFrequency(f)Midpoint(M)M2f⋅M210-1411214414415-1931728986720-24922484435625-292277291458
Step 6
Find the sum of all frequencies. In this case, the sum of all frequencies is n=1,3,9,2=15.
∑f=n=15
Step 7
Find the sum of f⋅M2 column. In this case, 144+867+4356+1458=6825.
∑f⋅M2=6825
Step 8
Step 8.1
Find the midpoint M for each class.
ClassFrequency(f)Midpoint(M)10-1411215-1931720-2492225-29227
Step 8.2
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)f⋅M10-141121⋅1215-193173⋅1720-249229⋅2225-292272⋅27
Step 8.3
Simplify the f⋅M column.
ClassFrequency(f)Midpoint(M)f⋅M10-141121215-193175120-2492219825-2922754
Step 8.4
Add the values in the f⋅M column.
12+51+198+54=315
Step 8.5
Add the values in the frequency column.
n=1+3+9+2=15
Step 8.6
The mean (mu) is the sum of f⋅M divided by n, which is the sum of frequencies.
μ=∑f⋅M∑f
Step 8.7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=31515
Step 8.8
Simplify the right side of μ=31515.
21
21
Step 9
The equation for the standard deviation is S2=∑f⋅M2-n(μ)2n-1.
S2=∑f⋅M2-n(μ)2n-1
Step 10
Substitute the calculated values into S2=∑f⋅M2-n(μ)2n-1.
S2=6825-15(21)215-1
Step 11
Simplify the right side of S2=6825-15(21)215-1 to get the variance S2=15.
15