Finite Math Examples
ClassFrequency12-14415-17519-21922-242
Step 1
Step 1.1
The lower limit for every class is the smallest value in that class. On the other hand, the upper limit for every class is the greatest value in that class.
ClassFrequency(f)LowerLimitsUpperLimits12-144121415-175151719-219192122-2422224
Step 1.2
The class midpoint is the lower class limit plus the upper class limit divided by 2.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12-144121412+14215-175151715+17219-219192119+21222-242222422+242
Step 1.3
Simplify all the midpoint column.
ClassFrequency(f)LowerLimitsUpperLimitsMidpoint(M)12-14412141315-17515171619-21919212022-242222423
Step 1.4
Add the midpoints column to the original table.
ClassFrequency(f)Midpoint(M)12-1441315-1751619-2192022-24223
ClassFrequency(f)Midpoint(M)12-1441315-1751619-2192022-24223
Step 2
Calculate the square of each group midpoint M2.
ClassFrequency(f)Midpoint(M)M212-1441313215-1751616219-2192020222-24223232
Step 3
Simplify the M2 column.
ClassFrequency(f)Midpoint(M)M212-1441316915-1751625619-2192040022-24223529
Step 4
Multiply each midpoint squared by its frequency f.
ClassFrequency(f)Midpoint(M)M2f⋅M212-144131694⋅16915-175162565⋅25619-219204009⋅40022-242235292⋅529
Step 5
Simplify the f⋅M2 column.
ClassFrequency(f)Midpoint(M)M2f⋅M212-1441316967615-17516256128019-21920400360022-242235291058
Step 6
Find the sum of all frequencies. In this case, the sum of all frequencies is n=4,5,9,2=20.
∑f=n=20
Step 7
Find the sum of f⋅M2 column. In this case, 676+1280+3600+1058=6614.
∑f⋅M2=6614
Step 8
Step 8.1
Find the midpoint M for each class.
ClassFrequency(f)Midpoint(M)12-1441315-1751619-2192022-24223
Step 8.2
Multiply the frequency of each class by the class midpoint.
ClassFrequency(f)Midpoint(M)f⋅M12-144134⋅1315-175165⋅1619-219209⋅2022-242232⋅23
Step 8.3
Simplify the f⋅M column.
ClassFrequency(f)Midpoint(M)f⋅M12-144135215-175168019-2192018022-2422346
Step 8.4
Add the values in the f⋅M column.
52+80+180+46=358
Step 8.5
Add the values in the frequency column.
n=4+5+9+2=20
Step 8.6
The mean (mu) is the sum of f⋅M divided by n, which is the sum of frequencies.
μ=∑f⋅M∑f
Step 8.7
The mean is the sum of the product of the midpoints and frequencies divided by the total of frequencies.
μ=35820
Step 8.8
Simplify the right side of μ=35820.
17.9
17.9
Step 9
The equation for the standard deviation is S2=∑f⋅M2-n(μ)2n-1.
S2=∑f⋅M2-n(μ)2n-1
Step 10
Substitute the calculated values into S2=∑f⋅M2-n(μ)2n-1.
S2=6614-20(17.9)220-1
Step 11
Simplify the right side of S2=6614-20(17.9)220-1 to get the variance S2=10.83157894.
10.83157894