Finite Math Examples
1212 , 1515 , 4545 , 6565 , 7878
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=12+15+45+65+785¯x=12+15+45+65+785
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 1212 and 1515.
‾x=27+45+65+785¯x=27+45+65+785
Step 1.2.2
Add 2727 and 4545.
‾x=72+65+785¯x=72+65+785
Step 1.2.3
Add 7272 and 6565.
‾x=137+785¯x=137+785
Step 1.2.4
Add 137137 and 7878.
‾x=2155¯x=2155
‾x=2155¯x=2155
Step 1.3
Divide 215215 by 55.
‾x=43¯x=43
‾x=43¯x=43
Step 2
Step 2.1
Convert 1212 to a decimal value.
1212
Step 2.2
Convert 1515 to a decimal value.
1515
Step 2.3
Convert 4545 to a decimal value.
4545
Step 2.4
Convert 6565 to a decimal value.
6565
Step 2.5
Convert 7878 to a decimal value.
7878
Step 2.6
The simplified values are 12,15,45,65,7812,15,45,65,78.
12,15,45,65,7812,15,45,65,78
12,15,45,65,7812,15,45,65,78
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1s=n∑i=1√(xi−xavg)2n−1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(12-43)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=√(12−43)2+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Subtract 4343 from 1212.
s=√(-31)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=√(−31)2+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 5.1.2
Raise -31−31 to the power of 22.
s=√961+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=√961+(15−43)2+(45−43)2+(65−43)2+(78−43)25−1
Step 5.1.3
Subtract 4343 from 1515.
s=√961+(-28)2+(45-43)2+(65-43)2+(78-43)25-1s=√961+(−28)2+(45−43)2+(65−43)2+(78−43)25−1
Step 5.1.4
Raise -28−28 to the power of 22.
s=√961+784+(45-43)2+(65-43)2+(78-43)25-1s=√961+784+(45−43)2+(65−43)2+(78−43)25−1
Step 5.1.5
Subtract 4343 from 4545.
s=√961+784+22+(65-43)2+(78-43)25-1s=√961+784+22+(65−43)2+(78−43)25−1
Step 5.1.6
Raise 22 to the power of 22.
s=√961+784+4+(65-43)2+(78-43)25-1s=√961+784+4+(65−43)2+(78−43)25−1
Step 5.1.7
Subtract 4343 from 6565.
s=√961+784+4+222+(78-43)25-1s=√961+784+4+222+(78−43)25−1
Step 5.1.8
Raise 2222 to the power of 22.
s=√961+784+4+484+(78-43)25-1s=√961+784+4+484+(78−43)25−1
Step 5.1.9
Subtract 43 from 78.
s=√961+784+4+484+3525-1
Step 5.1.10
Raise 35 to the power of 2.
s=√961+784+4+484+12255-1
Step 5.1.11
Add 961 and 784.
s=√1745+4+484+12255-1
Step 5.1.12
Add 1745 and 4.
s=√1749+484+12255-1
Step 5.1.13
Add 1749 and 484.
s=√2233+12255-1
Step 5.1.14
Add 2233 and 1225.
s=√34585-1
Step 5.1.15
Subtract 1 from 5.
s=√34584
s=√34584
Step 5.2
Cancel the common factor of 3458 and 4.
Step 5.2.1
Factor 2 out of 3458.
s=√2(1729)4
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor 2 out of 4.
s=√2⋅17292⋅2
Step 5.2.2.2
Cancel the common factor.
s=√2⋅17292⋅2
Step 5.2.2.3
Rewrite the expression.
s=√17292
s=√17292
s=√17292
Step 5.3
Rewrite √17292 as √1729√2.
s=√1729√2
Step 5.4
Multiply √1729√2 by √2√2.
s=√1729√2⋅√2√2
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply √1729√2 by √2√2.
s=√1729√2√2√2
Step 5.5.2
Raise √2 to the power of 1.
s=√1729√2√2√2
Step 5.5.3
Raise √2 to the power of 1.
s=√1729√2√2√2
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=√1729√2√21+1
Step 5.5.5
Add 1 and 1.
s=√1729√2√22
Step 5.5.6
Rewrite √22 as 2.
Step 5.5.6.1
Use n√ax=axn to rewrite √2 as 212.
s=√1729√2(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√1729√2212⋅2
Step 5.5.6.3
Combine 12 and 2.
s=√1729√2222
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
s=√1729√2222
Step 5.5.6.4.2
Rewrite the expression.
s=√1729√22
s=√1729√22
Step 5.5.6.5
Evaluate the exponent.
s=√1729√22
s=√1729√22
s=√1729√22
Step 5.6
Simplify the numerator.
Step 5.6.1
Combine using the product rule for radicals.
s=√1729⋅22
Step 5.6.2
Multiply 1729 by 2.
s=√34582
s=√34582
s=√34582
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
29.4