Finite Math Examples

Find the Sample Standard Deviation
1212 , 1515 , 4545 , 6565 , 7878
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
x=12+15+45+65+785¯x=12+15+45+65+785
Step 1.2
Simplify the numerator.
Tap for more steps...
Step 1.2.1
Add 1212 and 1515.
x=27+45+65+785¯x=27+45+65+785
Step 1.2.2
Add 2727 and 4545.
x=72+65+785¯x=72+65+785
Step 1.2.3
Add 7272 and 6565.
x=137+785¯x=137+785
Step 1.2.4
Add 137137 and 7878.
x=2155¯x=2155
x=2155¯x=2155
Step 1.3
Divide 215215 by 55.
x=43¯x=43
x=43¯x=43
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert 1212 to a decimal value.
1212
Step 2.2
Convert 1515 to a decimal value.
1515
Step 2.3
Convert 4545 to a decimal value.
4545
Step 2.4
Convert 6565 to a decimal value.
6565
Step 2.5
Convert 7878 to a decimal value.
7878
Step 2.6
The simplified values are 12,15,45,65,7812,15,45,65,78.
12,15,45,65,7812,15,45,65,78
12,15,45,65,7812,15,45,65,78
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=ni=1(xi-xavg)2n-1s=ni=1(xixavg)2n1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=(12-43)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=(1243)2+(1543)2+(4543)2+(6543)2+(7843)251
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Simplify the expression.
Tap for more steps...
Step 5.1.1
Subtract 4343 from 1212.
s=(-31)2+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=(31)2+(1543)2+(4543)2+(6543)2+(7843)251
Step 5.1.2
Raise -3131 to the power of 22.
s=961+(15-43)2+(45-43)2+(65-43)2+(78-43)25-1s=961+(1543)2+(4543)2+(6543)2+(7843)251
Step 5.1.3
Subtract 4343 from 1515.
s=961+(-28)2+(45-43)2+(65-43)2+(78-43)25-1s=961+(28)2+(4543)2+(6543)2+(7843)251
Step 5.1.4
Raise -2828 to the power of 22.
s=961+784+(45-43)2+(65-43)2+(78-43)25-1s=961+784+(4543)2+(6543)2+(7843)251
Step 5.1.5
Subtract 4343 from 4545.
s=961+784+22+(65-43)2+(78-43)25-1s=961+784+22+(6543)2+(7843)251
Step 5.1.6
Raise 22 to the power of 22.
s=961+784+4+(65-43)2+(78-43)25-1s=961+784+4+(6543)2+(7843)251
Step 5.1.7
Subtract 4343 from 6565.
s=961+784+4+222+(78-43)25-1s=961+784+4+222+(7843)251
Step 5.1.8
Raise 2222 to the power of 22.
s=961+784+4+484+(78-43)25-1s=961+784+4+484+(7843)251
Step 5.1.9
Subtract 43 from 78.
s=961+784+4+484+3525-1
Step 5.1.10
Raise 35 to the power of 2.
s=961+784+4+484+12255-1
Step 5.1.11
Add 961 and 784.
s=1745+4+484+12255-1
Step 5.1.12
Add 1745 and 4.
s=1749+484+12255-1
Step 5.1.13
Add 1749 and 484.
s=2233+12255-1
Step 5.1.14
Add 2233 and 1225.
s=34585-1
Step 5.1.15
Subtract 1 from 5.
s=34584
s=34584
Step 5.2
Cancel the common factor of 3458 and 4.
Tap for more steps...
Step 5.2.1
Factor 2 out of 3458.
s=2(1729)4
Step 5.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.2.1
Factor 2 out of 4.
s=2172922
Step 5.2.2.2
Cancel the common factor.
s=2172922
Step 5.2.2.3
Rewrite the expression.
s=17292
s=17292
s=17292
Step 5.3
Rewrite 17292 as 17292.
s=17292
Step 5.4
Multiply 17292 by 22.
s=1729222
Step 5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.1
Multiply 17292 by 22.
s=1729222
Step 5.5.2
Raise 2 to the power of 1.
s=1729222
Step 5.5.3
Raise 2 to the power of 1.
s=1729222
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
s=1729221+1
Step 5.5.5
Add 1 and 1.
s=1729222
Step 5.5.6
Rewrite 22 as 2.
Tap for more steps...
Step 5.5.6.1
Use nax=axn to rewrite 2 as 212.
s=17292(212)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=172922122
Step 5.5.6.3
Combine 12 and 2.
s=17292222
Step 5.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.5.6.4.1
Cancel the common factor.
s=17292222
Step 5.5.6.4.2
Rewrite the expression.
s=172922
s=172922
Step 5.5.6.5
Evaluate the exponent.
s=172922
s=172922
s=172922
Step 5.6
Simplify the numerator.
Tap for more steps...
Step 5.6.1
Combine using the product rule for radicals.
s=172922
Step 5.6.2
Multiply 1729 by 2.
s=34582
s=34582
s=34582
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
29.4
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay