Finite Math Examples
xy413512411610314xy413512411610314
Step 1
The linear correlation coefficient measures the relationship between the paired values in a sample.
r=n(∑xy)-∑x∑y√n(∑x2)-(∑x)2⋅√n(∑y2)-(∑y)2r=n(∑xy)−∑x∑y√n(∑x2)−(∑x)2⋅√n(∑y2)−(∑y)2
Step 2
Sum up the xx values.
∑x=4+5+4+6+3∑x=4+5+4+6+3
Step 3
Simplify the expression.
∑x=22∑x=22
Step 4
Sum up the yy values.
∑y=13+12+11+10+14∑y=13+12+11+10+14
Step 5
Simplify the expression.
∑y=60∑y=60
Step 6
Sum up the values of x⋅yx⋅y.
∑xy=4⋅13+5⋅12+4⋅11+6⋅10+3⋅14∑xy=4⋅13+5⋅12+4⋅11+6⋅10+3⋅14
Step 7
Simplify the expression.
∑xy=258∑xy=258
Step 8
Sum up the values of x2x2.
∑x2=(4)2+(5)2+(4)2+(6)2+(3)2∑x2=(4)2+(5)2+(4)2+(6)2+(3)2
Step 9
Simplify the expression.
∑x2=102∑x2=102
Step 10
Sum up the values of y2y2.
∑y2=(13)2+(12)2+(11)2+(10)2+(14)2∑y2=(13)2+(12)2+(11)2+(10)2+(14)2
Step 11
Simplify the expression.
∑y2=730∑y2=730
Step 12
Fill in the computed values.
r=5(258)-22⋅60√5(102)-(22)2⋅√5(730)-(60)2r=5(258)−22⋅60√5(102)−(22)2⋅√5(730)−(60)2
Step 13
Simplify the expression.
r=-0.83205029
Step 14
Find the critical value for a confidence level of 0 and 5 degrees of freedom.
t=3.18244628