Finite Math Examples
22 , 44 , 66 , 88 , 1010 , 1212
Step 1
The quadratic mean (rms) of a set of numbers is the square root of the sum of the squares of the numbers divided by the number of terms.
√(2)2+(4)2+(6)2+(8)2+(10)2+(12)26√(2)2+(4)2+(6)2+(8)2+(10)2+(12)26
Step 2
Step 2.1
Simplify the expression.
Step 2.1.1
Raise 22 to the power of 22.
√4+(4)2+(6)2+(8)2+(10)2+(12)26√4+(4)2+(6)2+(8)2+(10)2+(12)26
Step 2.1.2
Raise 44 to the power of 22.
√4+16+(6)2+(8)2+(10)2+(12)26√4+16+(6)2+(8)2+(10)2+(12)26
Step 2.1.3
Raise 66 to the power of 22.
√4+16+36+(8)2+(10)2+(12)26√4+16+36+(8)2+(10)2+(12)26
Step 2.1.4
Raise 88 to the power of 22.
√4+16+36+64+(10)2+(12)26√4+16+36+64+(10)2+(12)26
Step 2.1.5
Raise 1010 to the power of 22.
√4+16+36+64+100+(12)26√4+16+36+64+100+(12)26
Step 2.1.6
Raise 1212 to the power of 22.
√4+16+36+64+100+1446√4+16+36+64+100+1446
Step 2.1.7
Add 44 and 1616.
√20+36+64+100+1446√20+36+64+100+1446
Step 2.1.8
Add 2020 and 3636.
√56+64+100+1446√56+64+100+1446
Step 2.1.9
Add 5656 and 6464.
√120+100+1446√120+100+1446
Step 2.1.10
Add 120120 and 100100.
√220+1446√220+1446
Step 2.1.11
Add 220220 and 144144.
√3646√3646
√3646√3646
Step 2.2
Cancel the common factor of 364364 and 66.
Step 2.2.1
Factor 22 out of 364364.
√2(182)6√2(182)6
Step 2.2.2
Cancel the common factors.
Step 2.2.2.1
Factor 22 out of 66.
√2⋅1822⋅3√2⋅1822⋅3
Step 2.2.2.2
Cancel the common factor.
√2⋅1822⋅3
Step 2.2.2.3
Rewrite the expression.
√1823
√1823
√1823
Step 2.3
Rewrite √1823 as √182√3.
√182√3
Step 2.4
Multiply √182√3 by √3√3.
√182√3⋅√3√3
Step 2.5
Combine and simplify the denominator.
Step 2.5.1
Multiply √182√3 by √3√3.
√182√3√3√3
Step 2.5.2
Raise √3 to the power of 1.
√182√3√31√3
Step 2.5.3
Raise √3 to the power of 1.
√182√3√31√31
Step 2.5.4
Use the power rule aman=am+n to combine exponents.
√182√3√31+1
Step 2.5.5
Add 1 and 1.
√182√3√32
Step 2.5.6
Rewrite √32 as 3.
Step 2.5.6.1
Use n√ax=axn to rewrite √3 as 312.
√182√3(312)2
Step 2.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√182√3312⋅2
Step 2.5.6.3
Combine 12 and 2.
√182√3322
Step 2.5.6.4
Cancel the common factor of 2.
Step 2.5.6.4.1
Cancel the common factor.
√182√3322
Step 2.5.6.4.2
Rewrite the expression.
√182√331
√182√331
Step 2.5.6.5
Evaluate the exponent.
√182√33
√182√33
√182√33
Step 2.6
Simplify the numerator.
Step 2.6.1
Combine using the product rule for radicals.
√182⋅33
Step 2.6.2
Multiply 182 by 3.
√5463
√5463
√5463
Step 3
The result can be shown in multiple forms.
Exact Form:
√5463
Decimal Form:
7.78888096…