Examples
f(x)=√xf(x)=√x
Step 1
Write f(x)=√xf(x)=√x as an equation.
y=√xy=√x
Step 2
Interchange the variables.
x=√yx=√y
Step 3
Step 3.1
Rewrite the equation as √y=x√y=x.
√y=x√y=x
Step 3.2
To remove the radical on the left side of the equation, square both sides of the equation.
√y2=x2√y2=x2
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use n√ax=axnn√ax=axn to rewrite √y√y as y12y12.
(y12)2=x2(y12)2=x2
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify (y12)2(y12)2.
Step 3.3.2.1.1
Multiply the exponents in (y12)2(y12)2.
Step 3.3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
y12⋅2=x2y12⋅2=x2
Step 3.3.2.1.1.2
Cancel the common factor of 22.
Step 3.3.2.1.1.2.1
Cancel the common factor.
y12⋅2=x2
Step 3.3.2.1.1.2.2
Rewrite the expression.
y1=x2
y1=x2
y1=x2
Step 3.3.2.1.2
Simplify.
y=x2
y=x2
y=x2
y=x2
y=x2
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=x2
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(√x) by substituting in the value of f into f-1.
f-1(√x)=(√x)2
Step 5.2.3
Rewrite √x2 as x.
Step 5.2.3.1
Use n√ax=axn to rewrite √x as x12.
f-1(√x)=(x12)2
Step 5.2.3.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(√x)=x12⋅2
Step 5.2.3.3
Combine 12 and 2.
f-1(√x)=x22
Step 5.2.3.4
Cancel the common factor of 2.
Step 5.2.3.4.1
Cancel the common factor.
f-1(√x)=x22
Step 5.2.3.4.2
Rewrite the expression.
f-1(√x)=x
f-1(√x)=x
Step 5.2.3.5
Simplify.
f-1(√x)=x
f-1(√x)=x
f-1(√x)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(x2) by substituting in the value of f-1 into f.
f(x2)=√x2
Step 5.3.3
Remove parentheses.
f(x2)=√x2
Step 5.3.4
Pull terms out from under the radical, assuming positive real numbers.
f(x2)=x
f(x2)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x2 is the inverse of f(x)=√x.
f-1(x)=x2
f-1(x)=x2