Examples
x=0 , x=-1 , x=1
Step 1
Since the roots of an equation are the points where the solution is 0, set each root as a factor of the equation that equals 0.
(x-0)(x-(-1))(x-1)=0
Step 2
Step 2.1
Simplify by multiplying through.
Step 2.1.1
Apply the distributive property.
(x⋅x+x⋅1)(x-1)=0
Step 2.1.2
Simplify the expression.
Step 2.1.2.1
Multiply x by x.
(x2+x⋅1)(x-1)=0
Step 2.1.2.2
Multiply x by 1.
(x2+x)(x-1)=0
(x2+x)(x-1)=0
(x2+x)(x-1)=0
Step 2.2
Expand (x2+x)(x-1) using the FOIL Method.
Step 2.2.1
Apply the distributive property.
x2(x-1)+x(x-1)=0
Step 2.2.2
Apply the distributive property.
x2x+x2⋅-1+x(x-1)=0
Step 2.2.3
Apply the distributive property.
x2x+x2⋅-1+x⋅x+x⋅-1=0
x2x+x2⋅-1+x⋅x+x⋅-1=0
Step 2.3
Simplify and combine like terms.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Multiply x2 by x by adding the exponents.
Step 2.3.1.1.1
Multiply x2 by x.
Step 2.3.1.1.1.1
Raise x to the power of 1.
x2x+x2⋅-1+x⋅x+x⋅-1=0
Step 2.3.1.1.1.2
Use the power rule aman=am+n to combine exponents.
x2+1+x2⋅-1+x⋅x+x⋅-1=0
x2+1+x2⋅-1+x⋅x+x⋅-1=0
Step 2.3.1.1.2
Add 2 and 1.
x3+x2⋅-1+x⋅x+x⋅-1=0
x3+x2⋅-1+x⋅x+x⋅-1=0
Step 2.3.1.2
Move -1 to the left of x2.
x3-1⋅x2+x⋅x+x⋅-1=0
Step 2.3.1.3
Rewrite -1x2 as -x2.
x3-x2+x⋅x+x⋅-1=0
Step 2.3.1.4
Multiply x by x.
x3-x2+x2+x⋅-1=0
Step 2.3.1.5
Move -1 to the left of x.
x3-x2+x2-1⋅x=0
Step 2.3.1.6
Rewrite -1x as -x.
x3-x2+x2-x=0
x3-x2+x2-x=0
Step 2.3.2
Add -x2 and x2.
x3+0-x=0
Step 2.3.3
Add x3 and 0.
x3-x=0
x3-x=0
x3-x=0