Examples
(5x2+36x+40)÷(x+6)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x | + | 6 | 5x2 | + | 36x | + | 40 |
Step 2
Divide the highest order term in the dividend 5x2 by the highest order term in divisor x.
5x | |||||||||
x | + | 6 | 5x2 | + | 36x | + | 40 |
Step 3
Multiply the new quotient term by the divisor.
5x | |||||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
+ | 5x2 | + | 30x |
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in 5x2+30x
5x | |||||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x |
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
5x | |||||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x |
Step 6
Pull the next terms from the original dividend down into the current dividend.
5x | |||||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x | + | 40 |
Step 7
Divide the highest order term in the dividend 6x by the highest order term in divisor x.
5x | + | 6 | |||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x | + | 40 |
Step 8
Multiply the new quotient term by the divisor.
5x | + | 6 | |||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x | + | 40 | ||||||
+ | 6x | + | 36 |
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in 6x+36
5x | + | 6 | |||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x | + | 40 | ||||||
- | 6x | - | 36 |
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
5x | + | 6 | |||||||
x | + | 6 | 5x2 | + | 36x | + | 40 | ||
- | 5x2 | - | 30x | ||||||
+ | 6x | + | 40 | ||||||
- | 6x | - | 36 | ||||||
+ | 4 |
Step 11
The final answer is the quotient plus the remainder over the divisor.
5x+6+4x+6