Examples
x3-11x+8x3−11x+8 , x-3x−3
Step 1
Divide the higher order polynomial by the other polynomial in order to find the remainder.
x3-11x+8x-3x3−11x+8x−3
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 |
Step 3
Divide the highest order term in the dividend x3x3 by the highest order term in divisor xx.
x2x2 | |||||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 |
Step 4
Multiply the new quotient term by the divisor.
x2x2 | |||||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
+ | x3x3 | - | 3x23x2 |
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in x3-3x2x3−3x2
x2x2 | |||||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 |
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
x2x2 | |||||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 |
Step 7
Pull the next terms from the original dividend down into the current dividend.
x2x2 | |||||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x |
Step 8
Divide the highest order term in the dividend 3x23x2 by the highest order term in divisor xx.
x2x2 | + | 3x3x | |||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x |
Step 9
Multiply the new quotient term by the divisor.
x2x2 | + | 3x3x | |||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
+ | 3x23x2 | - | 9x9x |
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in 3x2-9x3x2−9x
x2x2 | + | 3x3x | |||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x |
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
x2x2 | + | 3x3x | |||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x |
Step 12
Pull the next terms from the original dividend down into the current dividend.
x2x2 | + | 3x3x | |||||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x | + | 88 |
Step 13
Divide the highest order term in the dividend -2x−2x by the highest order term in divisor xx.
x2x2 | + | 3x3x | - | 22 | |||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x | + | 88 |
Step 14
Multiply the new quotient term by the divisor.
x2x2 | + | 3x3x | - | 22 | |||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x | + | 88 | ||||||||
- | 2x2x | + | 66 |
Step 15
The expression needs to be subtracted from the dividend, so change all the signs in -2x+6−2x+6
x2x2 | + | 3x3x | - | 22 | |||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x | + | 88 | ||||||||
+ | 2x2x | - | 66 |
Step 16
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
x2x2 | + | 3x3x | - | 22 | |||||||
xx | - | 33 | x3x3 | + | 0x20x2 | - | 11x11x | + | 88 | ||
- | x3x3 | + | 3x23x2 | ||||||||
+ | 3x23x2 | - | 11x11x | ||||||||
- | 3x23x2 | + | 9x9x | ||||||||
- | 2x2x | + | 88 | ||||||||
+ | 2x2x | - | 66 | ||||||||
+ | 22 |
Step 17
The final answer is the quotient plus the remainder over the divisor.
x2+3x-2+2x-3x2+3x−2+2x−3
Step 18
The remainder is the part of the answer that is left after the division by x-3x−3 is complete.
22