Examples
x2-9x-10x+2x2−9x−10x+2
Step 1
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 00.
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 |
Step 1.2
Divide the highest order term in the dividend x2x2 by the highest order term in divisor xx.
xx | |||||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 |
Step 1.3
Multiply the new quotient term by the divisor.
xx | |||||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
+ | x2x2 | + | 2x2x |
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in x2+2xx2+2x
xx | |||||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x |
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
xx | |||||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x |
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
xx | |||||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x | - | 1010 |
Step 1.7
Divide the highest order term in the dividend -11x−11x by the highest order term in divisor xx.
xx | - | 1111 | |||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x | - | 1010 |
Step 1.8
Multiply the new quotient term by the divisor.
xx | - | 1111 | |||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x | - | 1010 | ||||||
- | 11x11x | - | 2222 |
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in -11x-22−11x−22
xx | - | 1111 | |||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x | - | 1010 | ||||||
+ | 11x11x | + | 2222 |
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
xx | - | 1111 | |||||||
xx | + | 22 | x2x2 | - | 9x9x | - | 1010 | ||
- | x2x2 | - | 2x2x | ||||||
- | 11x11x | - | 1010 | ||||||
+ | 11x11x | + | 2222 | ||||||
+ | 1212 |
Step 1.11
The final answer is the quotient plus the remainder over the divisor.
x-11+12x+2x−11+12x+2
x-11+12x+2x−11+12x+2
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.
1212