Examples

Find the Inverse
[221431201]221431201
Step 1
Find the determinant.
Tap for more steps...
Step 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 22 by its cofactor and add.
Tap for more steps...
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4121|4121
Step 1.1.4
Multiply element a12a12 by its cofactor.
-2|4121|24121
Step 1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2121|2121
Step 1.1.6
Multiply element a22a22 by its cofactor.
3|2121|32121
Step 1.1.7
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|2141|2141
Step 1.1.8
Multiply element a32a32 by its cofactor.
0|2141|02141
Step 1.1.9
Add the terms together.
-2|4121|+3|2121|+0|2141|24121+32121+02141
-2|4121|+3|2121|+0|2141|24121+32121+02141
Step 1.2
Multiply 00 by |2141|2141.
-2|4121|+3|2121|+024121+32121+0
Step 1.3
Evaluate |4121|4121.
Tap for more steps...
Step 1.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-2(41-21)+3|2121|+02(4121)+32121+0
Step 1.3.2
Simplify the determinant.
Tap for more steps...
Step 1.3.2.1
Simplify each term.
Tap for more steps...
Step 1.3.2.1.1
Multiply 44 by 11.
-2(4-21)+3|2121|+02(421)+32121+0
Step 1.3.2.1.2
Multiply -22 by 11.
-2(4-2)+3|2121|+02(42)+32121+0
-2(4-2)+3|2121|+02(42)+32121+0
Step 1.3.2.2
Subtract 2 from 4.
-22+3|2121|+0
-22+3|2121|+0
-22+3|2121|+0
Step 1.4
Evaluate |2121|.
Tap for more steps...
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-22+3(21-21)+0
Step 1.4.2
Simplify the determinant.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Multiply 2 by 1.
-22+3(2-21)+0
Step 1.4.2.1.2
Multiply -2 by 1.
-22+3(2-2)+0
-22+3(2-2)+0
Step 1.4.2.2
Subtract 2 from 2.
-22+30+0
-22+30+0
-22+30+0
Step 1.5
Simplify the determinant.
Tap for more steps...
Step 1.5.1
Simplify each term.
Tap for more steps...
Step 1.5.1.1
Multiply -2 by 2.
-4+30+0
Step 1.5.1.2
Multiply 3 by 0.
-4+0+0
-4+0+0
Step 1.5.2
Add -4 and 0.
-4+0
Step 1.5.3
Add -4 and 0.
-4
-4
-4
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[221100431010201001]
Step 4
Find the reduced row echelon form.
Tap for more steps...
Step 4.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Tap for more steps...
Step 4.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[222212120202431010201001]
Step 4.1.2
Simplify R1.
[11121200431010201001]
[11121200431010201001]
Step 4.2
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 4.2.1
Perform the row operation R2=R2-4R1 to make the entry at 2,1 a 0.
[111212004-413-411-4(12)0-4(12)1-400-40201001]
Step 4.2.2
Simplify R2.
[111212000-1-1-210201001]
[111212000-1-1-210201001]
Step 4.3
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 4.3.1
Perform the row operation R3=R3-2R1 to make the entry at 3,1 a 0.
[111212000-1-1-2102-210-211-2(12)0-2(12)0-201-20]
Step 4.3.2
Simplify R3.
[111212000-1-1-2100-20-101]
[111212000-1-1-2100-20-101]
Step 4.4
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
Tap for more steps...
Step 4.4.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[11121200-0--1--1--2-11-00-20-101]
Step 4.4.2
Simplify R2.
[111212000112-100-20-101]
[111212000112-100-20-101]
Step 4.5
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 4.5.1
Perform the row operation R3=R3+2R2 to make the entry at 3,2 a 0.
[111212000112-100+20-2+210+21-1+220+2-11+20]
Step 4.5.2
Simplify R3.
[111212000112-100023-21]
[111212000112-100023-21]
Step 4.6
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
Tap for more steps...
Step 4.6.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
[111212000112-1002022232-2212]
Step 4.6.2
Simplify R3.
[111212000112-1000132-112]
[111212000112-1000132-112]
Step 4.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 4.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[111212000-01-01-12-32-1+10-1200132-112]
Step 4.7.2
Simplify R2.
[11121200010120-1200132-112]
[11121200010120-1200132-112]
Step 4.8
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 4.8.1
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
[1-1201-12012-12112-12320-12-10-1212010120-1200132-112]
Step 4.8.2
Simplify R1.
[110-1412-14010120-1200132-112]
[110-1412-14010120-1200132-112]
Step 4.9
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 4.9.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-0-14-1212-0-14+12010120-1200132-112]
Step 4.9.2
Simplify R1.
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
[100-341214010120-1200132-112]
Step 5
The right half of the reduced row echelon form is the inverse.
[-341214120-1232-112]
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay