Examples
[987456123]⎡⎢⎣987456123⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|5623|∣∣∣5623∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=5⋅3-2⋅6a11=5⋅3−2⋅6
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 55 by 33.
a11=15-2⋅6a11=15−2⋅6
Step 2.1.2.2.1.2
Multiply -2−2 by 66.
a11=15-12a11=15−12
a11=15-12a11=15−12
Step 2.1.2.2.2
Subtract 1212 from 1515.
a11=3a11=3
a11=3a11=3
a11=3a11=3
a11=3a11=3
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4613|∣∣∣4613∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=4⋅3-1⋅6a12=4⋅3−1⋅6
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 44 by 33.
a12=12-1⋅6a12=12−1⋅6
Step 2.2.2.2.1.2
Multiply -1−1 by 66.
a12=12-6a12=12−6
a12=12-6a12=12−6
Step 2.2.2.2.2
Subtract 66 from 1212.
a12=6a12=6
a12=6a12=6
a12=6a12=6
a12=6a12=6
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|4512|∣∣∣4512∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=4⋅2-1⋅5a13=4⋅2−1⋅5
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 44 by 22.
a13=8-1⋅5a13=8−1⋅5
Step 2.3.2.2.1.2
Multiply -1−1 by 55.
a13=8-5a13=8−5
a13=8-5a13=8−5
Step 2.3.2.2.2
Subtract 55 from 88.
a13=3a13=3
a13=3a13=3
a13=3a13=3
a13=3a13=3
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|8723|∣∣∣8723∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=8⋅3-2⋅7a21=8⋅3−2⋅7
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 88 by 33.
a21=24-2⋅7a21=24−2⋅7
Step 2.4.2.2.1.2
Multiply -2−2 by 77.
a21=24-14a21=24−14
a21=24-14a21=24−14
Step 2.4.2.2.2
Subtract 1414 from 2424.
a21=10a21=10
a21=10a21=10
a21=10a21=10
a21=10a21=10
Step 2.5
Calculate the minor for element a22a22.
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|9713|∣∣∣9713∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a22=9⋅3-1⋅7a22=9⋅3−1⋅7
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 99 by 33.
a22=27-1⋅7a22=27−1⋅7
Step 2.5.2.2.1.2
Multiply -1−1 by 77.
a22=27-7a22=27−7
a22=27-7a22=27−7
Step 2.5.2.2.2
Subtract 77 from 2727.
a22=20a22=20
a22=20a22=20
a22=20a22=20
a22=20a22=20
Step 2.6
Calculate the minor for element a23a23.
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|9812|∣∣∣9812∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a23=9⋅2-1⋅8a23=9⋅2−1⋅8
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 99 by 22.
a23=18-1⋅8a23=18−1⋅8
Step 2.6.2.2.1.2
Multiply -1−1 by 88.
a23=18-8a23=18−8
a23=18-8a23=18−8
Step 2.6.2.2.2
Subtract 88 from 1818.
a23=10a23=10
a23=10a23=10
a23=10a23=10
a23=10a23=10
Step 2.7
Calculate the minor for element a31a31.
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|8756|∣∣∣8756∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a31=8⋅6-5⋅7a31=8⋅6−5⋅7
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 88 by 66.
a31=48-5⋅7a31=48−5⋅7
Step 2.7.2.2.1.2
Multiply -5−5 by 77.
a31=48-35a31=48−35
a31=48-35a31=48−35
Step 2.7.2.2.2
Subtract 3535 from 4848.
a31=13a31=13
a31=13a31=13
a31=13a31=13
a31=13a31=13
Step 2.8
Calculate the minor for element a32a32.
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|9746|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=9⋅6-4⋅7
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 9 by 6.
a32=54-4⋅7
Step 2.8.2.2.1.2
Multiply -4 by 7.
a32=54-28
a32=54-28
Step 2.8.2.2.2
Subtract 28 from 54.
a32=26
a32=26
a32=26
a32=26
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|9845|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=9⋅5-4⋅8
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 9 by 5.
a33=45-4⋅8
Step 2.9.2.2.1.2
Multiply -4 by 8.
a33=45-32
a33=45-32
Step 2.9.2.2.2
Subtract 32 from 45.
a33=13
a33=13
a33=13
a33=13
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[3-63-1020-1013-2613]
[3-63-1020-1013-2613]