Examples

Find the Cofactor Matrix
[987456123]987456123
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|5623|5623
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=53-26a11=5326
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 55 by 33.
a11=15-26a11=1526
Step 2.1.2.2.1.2
Multiply -22 by 66.
a11=15-12a11=1512
a11=15-12a11=1512
Step 2.1.2.2.2
Subtract 1212 from 1515.
a11=3a11=3
a11=3a11=3
a11=3a11=3
a11=3a11=3
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|4613|4613
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=43-16a12=4316
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 44 by 33.
a12=12-16a12=1216
Step 2.2.2.2.1.2
Multiply -11 by 66.
a12=12-6a12=126
a12=12-6a12=126
Step 2.2.2.2.2
Subtract 66 from 1212.
a12=6a12=6
a12=6a12=6
a12=6a12=6
a12=6a12=6
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|4512|4512
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=42-15a13=4215
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 44 by 22.
a13=8-15a13=815
Step 2.3.2.2.1.2
Multiply -11 by 55.
a13=8-5a13=85
a13=8-5a13=85
Step 2.3.2.2.2
Subtract 55 from 88.
a13=3a13=3
a13=3a13=3
a13=3a13=3
a13=3a13=3
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|8723|8723
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=83-27a21=8327
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 88 by 33.
a21=24-27a21=2427
Step 2.4.2.2.1.2
Multiply -22 by 77.
a21=24-14a21=2414
a21=24-14a21=2414
Step 2.4.2.2.2
Subtract 1414 from 2424.
a21=10a21=10
a21=10a21=10
a21=10a21=10
a21=10a21=10
Step 2.5
Calculate the minor for element a22a22.
Tap for more steps...
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|9713|9713
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a22=93-17a22=9317
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 99 by 33.
a22=27-17a22=2717
Step 2.5.2.2.1.2
Multiply -11 by 77.
a22=27-7a22=277
a22=27-7a22=277
Step 2.5.2.2.2
Subtract 77 from 2727.
a22=20a22=20
a22=20a22=20
a22=20a22=20
a22=20a22=20
Step 2.6
Calculate the minor for element a23a23.
Tap for more steps...
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|9812|9812
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a23=92-18a23=9218
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 99 by 22.
a23=18-18a23=1818
Step 2.6.2.2.1.2
Multiply -11 by 88.
a23=18-8a23=188
a23=18-8a23=188
Step 2.6.2.2.2
Subtract 88 from 1818.
a23=10a23=10
a23=10a23=10
a23=10a23=10
a23=10a23=10
Step 2.7
Calculate the minor for element a31a31.
Tap for more steps...
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|8756|8756
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a31=86-57a31=8657
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 88 by 66.
a31=48-57a31=4857
Step 2.7.2.2.1.2
Multiply -55 by 77.
a31=48-35a31=4835
a31=48-35a31=4835
Step 2.7.2.2.2
Subtract 3535 from 4848.
a31=13a31=13
a31=13a31=13
a31=13a31=13
a31=13a31=13
Step 2.8
Calculate the minor for element a32a32.
Tap for more steps...
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|9746|
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=96-47
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 9 by 6.
a32=54-47
Step 2.8.2.2.1.2
Multiply -4 by 7.
a32=54-28
a32=54-28
Step 2.8.2.2.2
Subtract 28 from 54.
a32=26
a32=26
a32=26
a32=26
Step 2.9
Calculate the minor for element a33.
Tap for more steps...
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|9845|
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=95-48
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 9 by 5.
a33=45-48
Step 2.9.2.2.1.2
Multiply -4 by 8.
a33=45-32
a33=45-32
Step 2.9.2.2.2
Subtract 32 from 45.
a33=13
a33=13
a33=13
a33=13
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[3-63-1020-1013-2613]
[3-63-1020-1013-2613]
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay