Examples
f(x)=2x2+5x-6
Step 1
The minimum of a quadratic function occurs at x=-b2a. If a is positive, the minimum value of the function is f(-b2a).
fminx=ax2+bx+c occurs at x=-b2a
Step 2
Step 2.1
Substitute in the values of a and b.
x=-52(2)
Step 2.2
Remove parentheses.
x=-52(2)
Step 2.3
Multiply 2 by 2.
x=-54
x=-54
Step 3
Step 3.1
Replace the variable x with -54 in the expression.
f(-54)=2(-54)2+5(-54)-6
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.2.1.1.1
Apply the product rule to -54.
f(-54)=2((-1)2(54)2)+5(-54)-6
Step 3.2.1.1.2
Apply the product rule to 54.
f(-54)=2((-1)2(5242))+5(-54)-6
f(-54)=2((-1)2(5242))+5(-54)-6
Step 3.2.1.2
Raise -1 to the power of 2.
f(-54)=2(1(5242))+5(-54)-6
Step 3.2.1.3
Multiply 5242 by 1.
f(-54)=2(5242)+5(-54)-6
Step 3.2.1.4
Raise 5 to the power of 2.
f(-54)=2(2542)+5(-54)-6
Step 3.2.1.5
Raise 4 to the power of 2.
f(-54)=2(2516)+5(-54)-6
Step 3.2.1.6
Cancel the common factor of 2.
Step 3.2.1.6.1
Factor 2 out of 16.
f(-54)=2(252(8))+5(-54)-6
Step 3.2.1.6.2
Cancel the common factor.
f(-54)=2(252⋅8)+5(-54)-6
Step 3.2.1.6.3
Rewrite the expression.
f(-54)=258+5(-54)-6
f(-54)=258+5(-54)-6
Step 3.2.1.7
Multiply 5(-54).
Step 3.2.1.7.1
Multiply -1 by 5.
f(-54)=258-5(54)-6
Step 3.2.1.7.2
Combine -5 and 54.
f(-54)=258+-5⋅54-6
Step 3.2.1.7.3
Multiply -5 by 5.
f(-54)=258+-254-6
f(-54)=258+-254-6
Step 3.2.1.8
Move the negative in front of the fraction.
f(-54)=258-254-6
f(-54)=258-254-6
Step 3.2.2
Find the common denominator.
Step 3.2.2.1
Multiply 254 by 22.
f(-54)=258-(254⋅22)-6
Step 3.2.2.2
Multiply 254 by 22.
f(-54)=258-25⋅24⋅2-6
Step 3.2.2.3
Write -6 as a fraction with denominator 1.
f(-54)=258-25⋅24⋅2+-61
Step 3.2.2.4
Multiply -61 by 88.
f(-54)=258-25⋅24⋅2+-61⋅88
Step 3.2.2.5
Multiply -61 by 88.
f(-54)=258-25⋅24⋅2+-6⋅88
Step 3.2.2.6
Reorder the factors of 4⋅2.
f(-54)=258-25⋅22⋅4+-6⋅88
Step 3.2.2.7
Multiply 2 by 4.
f(-54)=258-25⋅28+-6⋅88
f(-54)=258-25⋅28+-6⋅88
Step 3.2.3
Combine the numerators over the common denominator.
f(-54)=25-25⋅2-6⋅88
Step 3.2.4
Simplify each term.
Step 3.2.4.1
Multiply -25 by 2.
f(-54)=25-50-6⋅88
Step 3.2.4.2
Multiply -6 by 8.
f(-54)=25-50-488
f(-54)=25-50-488
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Subtract 50 from 25.
f(-54)=-25-488
Step 3.2.5.2
Subtract 48 from -25.
f(-54)=-738
Step 3.2.5.3
Move the negative in front of the fraction.
f(-54)=-738
f(-54)=-738
Step 3.2.6
The final answer is -738.
-738
-738
-738
Step 4
Use the x and y values to find where the minimum occurs.
(-54,-738)
Step 5