Examples
[-13-8-4127424167]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 1.2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI3).
Step 1.3.1
Substitute [-13-8-4127424167] for A.
p(λ)=determinant([-13-8-4127424167]-λI3)
Step 1.3.2
Substitute [100010001] for I3.
p(λ)=determinant([-13-8-4127424167]-λ[100010001])
p(λ)=determinant([-13-8-4127424167]-λ[100010001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-13-8-4127424167]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-13-8-4127424167]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0.
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4
Multiply -λ⋅0.
Step 1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.6
Multiply -λ⋅0.
Step 1.4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.7
Multiply -λ⋅0.
Step 1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 1.4.1.2.8
Multiply -λ⋅0.
Step 1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000λ-λ⋅1])
Step 1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000-λ⋅1])
Step 1.4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000-λ])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000-λ])
p(λ)=determinant([-13-8-4127424167]+[-λ000-λ000-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[-13-λ-8+0-4+012+07-λ4+024+016+07-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Add -8 and 0.
p(λ)=determinant[-13-λ-8-4+012+07-λ4+024+016+07-λ]
Step 1.4.3.2
Add -4 and 0.
p(λ)=determinant[-13-λ-8-412+07-λ4+024+016+07-λ]
Step 1.4.3.3
Add 12 and 0.
p(λ)=determinant[-13-λ-8-4127-λ4+024+016+07-λ]
Step 1.4.3.4
Add 4 and 0.
p(λ)=determinant[-13-λ-8-4127-λ424+016+07-λ]
Step 1.4.3.5
Add 24 and 0.
p(λ)=determinant[-13-λ-8-4127-λ42416+07-λ]
Step 1.4.3.6
Add 16 and 0.
p(λ)=determinant[-13-λ-8-4127-λ424167-λ]
p(λ)=determinant[-13-λ-8-4127-λ424167-λ]
p(λ)=determinant[-13-λ-8-4127-λ424167-λ]
Step 1.5
Find the determinant.
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|7-λ4167-λ|
Step 1.5.1.4
Multiply element a11 by its cofactor.
(-13-λ)|7-λ4167-λ|
Step 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|124247-λ|
Step 1.5.1.6
Multiply element a12 by its cofactor.
8|124247-λ|
Step 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|127-λ2416|
Step 1.5.1.8
Multiply element a13 by its cofactor.
-4|127-λ2416|
Step 1.5.1.9
Add the terms together.
p(λ)=(-13-λ)|7-λ4167-λ|+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)|7-λ4167-λ|+8|124247-λ|-4|127-λ2416|
Step 1.5.2
Evaluate |7-λ4167-λ|.
Step 1.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-13-λ)((7-λ)(7-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2
Simplify the determinant.
Step 1.5.2.2.1
Simplify each term.
Step 1.5.2.2.1.1
Expand (7-λ)(7-λ) using the FOIL Method.
Step 1.5.2.2.1.1.1
Apply the distributive property.
p(λ)=(-13-λ)(7(7-λ)-λ(7-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.1.2
Apply the distributive property.
p(λ)=(-13-λ)(7⋅7+7(-λ)-λ(7-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.1.3
Apply the distributive property.
p(λ)=(-13-λ)(7⋅7+7(-λ)-λ⋅7-λ(-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(7⋅7+7(-λ)-λ⋅7-λ(-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2
Simplify and combine like terms.
Step 1.5.2.2.1.2.1
Simplify each term.
Step 1.5.2.2.1.2.1.1
Multiply 7 by 7.
p(λ)=(-13-λ)(49+7(-λ)-λ⋅7-λ(-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.2
Multiply -1 by 7.
p(λ)=(-13-λ)(49-7λ-λ⋅7-λ(-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.3
Multiply 7 by -1.
p(λ)=(-13-λ)(49-7λ-7λ-λ(-λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=(-13-λ)(49-7λ-7λ-1⋅-1λ⋅λ-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 1.5.2.2.1.2.1.5.1
Move λ.
p(λ)=(-13-λ)(49-7λ-7λ-1⋅-1(λ⋅λ)-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=(-13-λ)(49-7λ-7λ-1⋅-1λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(49-7λ-7λ-1⋅-1λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.6
Multiply -1 by -1.
p(λ)=(-13-λ)(49-7λ-7λ+1λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=(-13-λ)(49-7λ-7λ+λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(49-7λ-7λ+λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.2.2
Subtract 7λ from -7λ.
p(λ)=(-13-λ)(49-14λ+λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(49-14λ+λ2-16⋅4)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.1.3
Multiply -16 by 4.
p(λ)=(-13-λ)(49-14λ+λ2-64)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(49-14λ+λ2-64)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.2
Subtract 64 from 49.
p(λ)=(-13-λ)(-14λ+λ2-15)+8|124247-λ|-4|127-λ2416|
Step 1.5.2.2.3
Reorder -14λ and λ2.
p(λ)=(-13-λ)(λ2-14λ-15)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(λ2-14λ-15)+8|124247-λ|-4|127-λ2416|
p(λ)=(-13-λ)(λ2-14λ-15)+8|124247-λ|-4|127-λ2416|
Step 1.5.3
Evaluate |124247-λ|.
Step 1.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-13-λ)(λ2-14λ-15)+8(12(7-λ)-24⋅4)-4|127-λ2416|
Step 1.5.3.2
Simplify the determinant.
Step 1.5.3.2.1
Simplify each term.
Step 1.5.3.2.1.1
Apply the distributive property.
p(λ)=(-13-λ)(λ2-14λ-15)+8(12⋅7+12(-λ)-24⋅4)-4|127-λ2416|
Step 1.5.3.2.1.2
Multiply 12 by 7.
p(λ)=(-13-λ)(λ2-14λ-15)+8(84+12(-λ)-24⋅4)-4|127-λ2416|
Step 1.5.3.2.1.3
Multiply -1 by 12.
p(λ)=(-13-λ)(λ2-14λ-15)+8(84-12λ-24⋅4)-4|127-λ2416|
Step 1.5.3.2.1.4
Multiply -24 by 4.
p(λ)=(-13-λ)(λ2-14λ-15)+8(84-12λ-96)-4|127-λ2416|
p(λ)=(-13-λ)(λ2-14λ-15)+8(84-12λ-96)-4|127-λ2416|
Step 1.5.3.2.2
Subtract 96 from 84.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4|127-λ2416|
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4|127-λ2416|
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4|127-λ2416|
Step 1.5.4
Evaluate |127-λ2416|.
Step 1.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(12⋅16-24(7-λ))
Step 1.5.4.2
Simplify the determinant.
Step 1.5.4.2.1
Simplify each term.
Step 1.5.4.2.1.1
Multiply 12 by 16.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(192-24(7-λ))
Step 1.5.4.2.1.2
Apply the distributive property.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(192-24⋅7-24(-λ))
Step 1.5.4.2.1.3
Multiply -24 by 7.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(192-168-24(-λ))
Step 1.5.4.2.1.4
Multiply -1 by -24.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(192-168+24λ)
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(192-168+24λ)
Step 1.5.4.2.2
Subtract 168 from 192.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(24+24λ)
Step 1.5.4.2.3
Reorder 24 and 24λ.
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(24λ+24)
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(24λ+24)
p(λ)=(-13-λ)(λ2-14λ-15)+8(-12λ-12)-4(24λ+24)
Step 1.5.5
Simplify the determinant.
Step 1.5.5.1
Simplify each term.
Step 1.5.5.1.1
Expand (-13-λ)(λ2-14λ-15) by multiplying each term in the first expression by each term in the second expression.
p(λ)=-13λ2-13(-14λ)-13⋅-15-λ⋅λ2-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2
Simplify each term.
Step 1.5.5.1.2.1
Multiply -14 by -13.
p(λ)=-13λ2+182λ-13⋅-15-λ⋅λ2-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.2
Multiply -13 by -15.
p(λ)=-13λ2+182λ+195-λ⋅λ2-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Step 1.5.5.1.2.3.1
Move λ2.
p(λ)=-13λ2+182λ+195-(λ2λ)-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.3.2
Multiply λ2 by λ.
Step 1.5.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=-13λ2+182λ+195-(λ2λ1)-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-13λ2+182λ+195-λ2+1-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
p(λ)=-13λ2+182λ+195-λ2+1-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.3.3
Add 2 and 1.
p(λ)=-13λ2+182λ+195-λ3-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
p(λ)=-13λ2+182λ+195-λ3-λ(-14λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=-13λ2+182λ+195-λ3-1⋅-14λ⋅λ-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.5
Multiply λ by λ by adding the exponents.
Step 1.5.5.1.2.5.1
Move λ.
p(λ)=-13λ2+182λ+195-λ3-1⋅-14(λ⋅λ)-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.5.2
Multiply λ by λ.
p(λ)=-13λ2+182λ+195-λ3-1⋅-14λ2-λ⋅-15+8(-12λ-12)-4(24λ+24)
p(λ)=-13λ2+182λ+195-λ3-1⋅-14λ2-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.6
Multiply -1 by -14.
p(λ)=-13λ2+182λ+195-λ3+14λ2-λ⋅-15+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.2.7
Multiply -15 by -1.
p(λ)=-13λ2+182λ+195-λ3+14λ2+15λ+8(-12λ-12)-4(24λ+24)
p(λ)=-13λ2+182λ+195-λ3+14λ2+15λ+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.3
Add -13λ2 and 14λ2.
p(λ)=λ2+182λ+195-λ3+15λ+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.4
Add 182λ and 15λ.
p(λ)=λ2+197λ+195-λ3+8(-12λ-12)-4(24λ+24)
Step 1.5.5.1.5
Apply the distributive property.
p(λ)=λ2+197λ+195-λ3+8(-12λ)+8⋅-12-4(24λ+24)
Step 1.5.5.1.6
Multiply -12 by 8.
p(λ)=λ2+197λ+195-λ3-96λ+8⋅-12-4(24λ+24)
Step 1.5.5.1.7
Multiply 8 by -12.
p(λ)=λ2+197λ+195-λ3-96λ-96-4(24λ+24)
Step 1.5.5.1.8
Apply the distributive property.
p(λ)=λ2+197λ+195-λ3-96λ-96-4(24λ)-4⋅24
Step 1.5.5.1.9
Multiply 24 by -4.
p(λ)=λ2+197λ+195-λ3-96λ-96-96λ-4⋅24
Step 1.5.5.1.10
Multiply -4 by 24.
p(λ)=λ2+197λ+195-λ3-96λ-96-96λ-96
p(λ)=λ2+197λ+195-λ3-96λ-96-96λ-96
Step 1.5.5.2
Subtract 96λ from 197λ.
p(λ)=λ2+101λ+195-λ3-96-96λ-96
Step 1.5.5.3
Subtract 96λ from 101λ.
p(λ)=λ2+5λ+195-λ3-96-96
Step 1.5.5.4
Subtract 96 from 195.
p(λ)=λ2+5λ-λ3+99-96
Step 1.5.5.5
Subtract 96 from 99.
p(λ)=λ2+5λ-λ3+3
Step 1.5.5.6
Move 5λ.
p(λ)=λ2-λ3+5λ+3
Step 1.5.5.7
Reorder λ2 and -λ3.
p(λ)=-λ3+λ2+5λ+3
p(λ)=-λ3+λ2+5λ+3
p(λ)=-λ3+λ2+5λ+3
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3+λ2+5λ+3=0
Step 1.7
Solve for λ.
Step 1.7.1
Factor the left side of the equation.
Step 1.7.1.1
Factor -λ3+λ2+5λ+3 using the rational roots test.
Step 1.7.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±3
q=±1
Step 1.7.1.1.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±3
Step 1.7.1.1.3
Substitute -1 and simplify the expression. In this case, the expression is equal to 0 so -1 is a root of the polynomial.
Step 1.7.1.1.3.1
Substitute -1 into the polynomial.
-(-1)3+(-1)2+5⋅-1+3
Step 1.7.1.1.3.2
Raise -1 to the power of 3.
--1+(-1)2+5⋅-1+3
Step 1.7.1.1.3.3
Multiply -1 by -1.
1+(-1)2+5⋅-1+3
Step 1.7.1.1.3.4
Raise -1 to the power of 2.
1+1+5⋅-1+3
Step 1.7.1.1.3.5
Add 1 and 1.
2+5⋅-1+3
Step 1.7.1.1.3.6
Multiply 5 by -1.
2-5+3
Step 1.7.1.1.3.7
Subtract 5 from 2.
-3+3
Step 1.7.1.1.3.8
Add -3 and 3.
0
0
Step 1.7.1.1.4
Since -1 is a known root, divide the polynomial by λ+1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
-λ3+λ2+5λ+3λ+1
Step 1.7.1.1.5
Divide -λ3+λ2+5λ+3 by λ+1.
Step 1.7.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 |
Step 1.7.1.1.5.2
Divide the highest order term in the dividend -λ3 by the highest order term in divisor λ.
- | λ2 | ||||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 |
Step 1.7.1.1.5.3
Multiply the new quotient term by the divisor.
- | λ2 | ||||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
- | λ3 | - | λ2 |
Step 1.7.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in -λ3-λ2
- | λ2 | ||||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 |
Step 1.7.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | ||||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 |
Step 1.7.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | λ2 | ||||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ |
Step 1.7.1.1.5.7
Divide the highest order term in the dividend 2λ2 by the highest order term in divisor λ.
- | λ2 | + | 2λ | ||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ |
Step 1.7.1.1.5.8
Multiply the new quotient term by the divisor.
- | λ2 | + | 2λ | ||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
+ | 2λ2 | + | 2λ |
Step 1.7.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in 2λ2+2λ
- | λ2 | + | 2λ | ||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ |
Step 1.7.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | + | 2λ | ||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ |
Step 1.7.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | λ2 | + | 2λ | ||||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ | + | 3 |
Step 1.7.1.1.5.12
Divide the highest order term in the dividend 3λ by the highest order term in divisor λ.
- | λ2 | + | 2λ | + | 3 | ||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ | + | 3 |
Step 1.7.1.1.5.13
Multiply the new quotient term by the divisor.
- | λ2 | + | 2λ | + | 3 | ||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ | + | 3 | ||||||||
+ | 3λ | + | 3 |
Step 1.7.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in 3λ+3
- | λ2 | + | 2λ | + | 3 | ||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ | + | 3 | ||||||||
- | 3λ | - | 3 |
Step 1.7.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | λ2 | + | 2λ | + | 3 | ||||||
λ | + | 1 | - | λ3 | + | λ2 | + | 5λ | + | 3 | |
+ | λ3 | + | λ2 | ||||||||
+ | 2λ2 | + | 5λ | ||||||||
- | 2λ2 | - | 2λ | ||||||||
+ | 3λ | + | 3 | ||||||||
- | 3λ | - | 3 | ||||||||
0 |
Step 1.7.1.1.5.16
Since the remander is 0, the final answer is the quotient.
-λ2+2λ+3
-λ2+2λ+3
Step 1.7.1.1.6
Write -λ3+λ2+5λ+3 as a set of factors.
(λ+1)(-λ2+2λ+3)=0
(λ+1)(-λ2+2λ+3)=0
Step 1.7.1.2
Factor by grouping.
Step 1.7.1.2.1
Factor by grouping.
Step 1.7.1.2.1.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=-1⋅3=-3 and whose sum is b=2.
Step 1.7.1.2.1.1.1
Factor 2 out of 2λ.
(λ+1)(-λ2+2(λ)+3)=0
Step 1.7.1.2.1.1.2
Rewrite 2 as -1 plus 3
(λ+1)(-λ2+(-1+3)λ+3)=0
Step 1.7.1.2.1.1.3
Apply the distributive property.
(λ+1)(-λ2-1λ+3λ+3)=0
(λ+1)(-λ2-1λ+3λ+3)=0
Step 1.7.1.2.1.2
Factor out the greatest common factor from each group.
Step 1.7.1.2.1.2.1
Group the first two terms and the last two terms.
(λ+1)((-λ2-1λ)+3λ+3)=0
Step 1.7.1.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
(λ+1)(λ(-λ-1)-3(-λ-1))=0
(λ+1)(λ(-λ-1)-3(-λ-1))=0
Step 1.7.1.2.1.3
Factor the polynomial by factoring out the greatest common factor, -λ-1.
(λ+1)((-λ-1)(λ-3))=0
(λ+1)((-λ-1)(λ-3))=0
Step 1.7.1.2.2
Remove unnecessary parentheses.
(λ+1)(-λ-1)(λ-3)=0
(λ+1)(-λ-1)(λ-3)=0
(λ+1)(-λ-1)(λ-3)=0
Step 1.7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ+1=0
-λ-1=0
λ-3=0
Step 1.7.3
Set λ+1 equal to 0 and solve for λ.
Step 1.7.3.1
Set λ+1 equal to 0.
λ+1=0
Step 1.7.3.2
Subtract 1 from both sides of the equation.
λ=-1
λ=-1
Step 1.7.4
Set λ-3 equal to 0 and solve for λ.
Step 1.7.4.1
Set λ-3 equal to 0.
λ-3=0
Step 1.7.4.2
Add 3 to both sides of the equation.
λ=3
λ=3
Step 1.7.5
The final solution is all the values that make (λ+1)(-λ-1)(λ-3)=0 true.
λ=-1,3
λ=-1,3
λ=-1,3
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI3)
Step 3
Step 3.1
Substitute the known values into the formula.
N([-13-8-4127424167]+[100010001])
Step 3.2
Simplify.
Step 3.2.1
Add the corresponding elements.
[-13+1-8+0-4+012+07+14+024+016+07+1]
Step 3.2.2
Simplify each element.
Step 3.2.2.1
Add -13 and 1.
[-12-8+0-4+012+07+14+024+016+07+1]
Step 3.2.2.2
Add -8 and 0.
[-12-8-4+012+07+14+024+016+07+1]
Step 3.2.2.3
Add -4 and 0.
[-12-8-412+07+14+024+016+07+1]
Step 3.2.2.4
Add 12 and 0.
[-12-8-4127+14+024+016+07+1]
Step 3.2.2.5
Add 7 and 1.
[-12-8-41284+024+016+07+1]
Step 3.2.2.6
Add 4 and 0.
[-12-8-4128424+016+07+1]
Step 3.2.2.7
Add 24 and 0.
[-12-8-412842416+07+1]
Step 3.2.2.8
Add 16 and 0.
[-12-8-4128424167+1]
Step 3.2.2.9
Add 7 and 1.
[-12-8-4128424168]
[-12-8-4128424168]
[-12-8-4128424168]
Step 3.3
Find the null space when λ=-1.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[-12-8-4012840241680]
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Multiply each element of R1 by -112 to make the entry at 1,1 a 1.
Step 3.3.2.1.1
Multiply each element of R1 by -112 to make the entry at 1,1 a 1.
[-112⋅-12-112⋅-8-112⋅-4-112⋅012840241680]
Step 3.3.2.1.2
Simplify R1.
[12313012840241680]
[12313012840241680]
Step 3.3.2.2
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
Step 3.3.2.2.1
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
[12313012-12⋅18-12(23)4-12(13)0-12⋅0241680]
Step 3.3.2.2.2
Simplify R2.
[1231300000241680]
[1231300000241680]
Step 3.3.2.3
Perform the row operation R3=R3-24R1 to make the entry at 3,1 a 0.
Step 3.3.2.3.1
Perform the row operation R3=R3-24R1 to make the entry at 3,1 a 0.
[123130000024-24⋅116-24(23)8-24(13)0-24⋅0]
Step 3.3.2.3.2
Simplify R3.
[12313000000000]
[12313000000000]
[12313000000000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x+23y+13z=0
0=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[-2y3-z3yz]
Step 3.3.5
Write the solution as a linear combination of vectors.
[xyz]=y[-2310]+z[-1301]
Step 3.3.6
Write as a solution set.
{y[-2310]+z[-1301]|y,z∈R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[-2310],[-1301]}
{[-2310],[-1301]}
{[-2310],[-1301]}
Step 4
Step 4.1
Substitute the known values into the formula.
N([-13-8-4127424167]-3[100010001])
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply -3 by each element of the matrix.
[-13-8-4127424167]+[-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2
Simplify each element in the matrix.
Step 4.2.1.2.1
Multiply -3 by 1.
[-13-8-4127424167]+[-3-3⋅0-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.2
Multiply -3 by 0.
[-13-8-4127424167]+[-30-3⋅0-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.3
Multiply -3 by 0.
[-13-8-4127424167]+[-300-3⋅0-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.4
Multiply -3 by 0.
[-13-8-4127424167]+[-3000-3⋅1-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.5
Multiply -3 by 1.
[-13-8-4127424167]+[-3000-3-3⋅0-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.6
Multiply -3 by 0.
[-13-8-4127424167]+[-3000-30-3⋅0-3⋅0-3⋅1]
Step 4.2.1.2.7
Multiply -3 by 0.
[-13-8-4127424167]+[-3000-300-3⋅0-3⋅1]
Step 4.2.1.2.8
Multiply -3 by 0.
[-13-8-4127424167]+[-3000-3000-3⋅1]
Step 4.2.1.2.9
Multiply -3 by 1.
[-13-8-4127424167]+[-3000-3000-3]
[-13-8-4127424167]+[-3000-3000-3]
[-13-8-4127424167]+[-3000-3000-3]
Step 4.2.2
Add the corresponding elements.
[-13-3-8+0-4+012+07-34+024+016+07-3]
Step 4.2.3
Simplify each element.
Step 4.2.3.1
Subtract 3 from -13.
[-16-8+0-4+012+07-34+024+016+07-3]
Step 4.2.3.2
Add -8 and 0.
[-16-8-4+012+07-34+024+016+07-3]
Step 4.2.3.3
Add -4 and 0.
[-16-8-412+07-34+024+016+07-3]
Step 4.2.3.4
Add 12 and 0.
[-16-8-4127-34+024+016+07-3]
Step 4.2.3.5
Subtract 3 from 7.
[-16-8-41244+024+016+07-3]
Step 4.2.3.6
Add 4 and 0.
[-16-8-4124424+016+07-3]
Step 4.2.3.7
Add 24 and 0.
[-16-8-412442416+07-3]
Step 4.2.3.8
Add 16 and 0.
[-16-8-4124424167-3]
Step 4.2.3.9
Subtract 3 from 7.
[-16-8-4124424164]
[-16-8-4124424164]
[-16-8-4124424164]
Step 4.3
Find the null space when λ=3.
Step 4.3.1
Write as an augmented matrix for Ax=0.
[-16-8-4012440241640]
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Multiply each element of R1 by -116 to make the entry at 1,1 a 1.
Step 4.3.2.1.1
Multiply each element of R1 by -116 to make the entry at 1,1 a 1.
[-116⋅-16-116⋅-8-116⋅-4-116⋅012440241640]
Step 4.3.2.1.2
Simplify R1.
[11214012440241640]
[11214012440241640]
Step 4.3.2.2
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
Step 4.3.2.2.1
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
[11214012-12⋅14-12(12)4-12(14)0-12⋅0241640]
Step 4.3.2.2.2
Simplify R2.
[1121400-210241640]
[1121400-210241640]
Step 4.3.2.3
Perform the row operation R3=R3-24R1 to make the entry at 3,1 a 0.
Step 4.3.2.3.1
Perform the row operation R3=R3-24R1 to make the entry at 3,1 a 0.
[1121400-21024-24⋅116-24(12)4-24(14)0-24⋅0]
Step 4.3.2.3.2
Simplify R3.
[1121400-21004-20]
[1121400-21004-20]
Step 4.3.2.4
Multiply each element of R2 by -12 to make the entry at 2,2 a 1.
Step 4.3.2.4.1
Multiply each element of R2 by -12 to make the entry at 2,2 a 1.
[112140-12⋅0-12⋅-2-12⋅1-12⋅004-20]
Step 4.3.2.4.2
Simplify R2.
[11214001-12004-20]
[11214001-12004-20]
Step 4.3.2.5
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
Step 4.3.2.5.1
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
[11214001-1200-4⋅04-4⋅1-2-4(-12)0-4⋅0]
Step 4.3.2.5.2
Simplify R3.
[11214001-1200000]
[11214001-1200000]
Step 4.3.2.6
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
Step 4.3.2.6.1
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
[1-12⋅012-12⋅114-12(-12)0-12⋅001-1200000]
Step 4.3.2.6.2
Simplify R1.
[1012001-1200000]
[1012001-1200000]
[1012001-1200000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x+12z=0
y-12z=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xyz]=[-z2z2z]
Step 4.3.5
Write the solution as a linear combination of vectors.
[xyz]=z[-12121]
Step 4.3.6
Write as a solution set.
{z[-12121]|z∈R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[-12121]}
{[-12121]}
{[-12121]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[-2310],[-1301],[-12121]}