Examples

Find the Characteristic Equation
B=[987345210]B=987345210
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]100010001
Step 3
Substitute the known values into p(λ)=determinant(A-λI3)p(λ)=determinant(AλI3).
Tap for more steps...
Step 3.1
Substitute [987345210]987345210 for AA.
p(λ)=determinant([987345210]-λI3)p(λ)=determinant987345210λI3
Step 3.2
Substitute [100010001]100010001 for I3I3.
p(λ)=determinant([987345210]-λ[100010001])p(λ)=determinant987345210λ100010001
p(λ)=determinant([987345210]-λ[100010001])p(λ)=determinant987345210λ100010001
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([987345210]+[-λ1-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ1λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([987345210]+[-λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λλ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ0λ-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ0λλ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ0λ0λ0λ1λ0λ0λ0λ1
p(λ)=determinant([987345210]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ0λ0λ0λ1λ0λ0λ0λ1
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ00λ-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ00λλ0λ1λ0λ0λ0λ1
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ00λ0λ1λ0λ0λ0λ1
p(λ)=determinant([987345210]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ00λ0λ1λ0λ0λ0λ1
Step 4.1.2.4
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.4.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ000λ-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λλ1λ0λ0λ0λ1
Step 4.1.2.4.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λ1λ0λ0λ0λ1
p(λ)=determinant([987345210]+[-λ000-λ1-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λ1λ0λ0λ0λ1
Step 4.1.2.5
Multiply -11 by 11.
p(λ)=determinant([987345210]+[-λ000-λ-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λλ0λ0λ0λ1
Step 4.1.2.6
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.6.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ000-λ0λ-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λ0λλ0λ0λ1
Step 4.1.2.6.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λ0λ0λ0λ1
p(λ)=determinant([987345210]+[-λ000-λ0-λ0-λ0-λ1])p(λ)=determinant987345210+λ000λ0λ0λ0λ1
Step 4.1.2.7
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.7.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ000-λ00λ-λ0-λ1])p(λ)=determinant987345210+λ000λ00λλ0λ1
Step 4.1.2.7.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ000-λ00-λ0-λ1])p(λ)=determinant987345210+λ000λ00λ0λ1
p(λ)=determinant([987345210]+[-λ000-λ00-λ0-λ1])p(λ)=determinant987345210+λ000λ00λ0λ1
Step 4.1.2.8
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.8.1
Multiply 00 by -11.
p(λ)=determinant([987345210]+[-λ000-λ000λ-λ1])p(λ)=determinant987345210+λ000λ000λλ1
Step 4.1.2.8.2
Multiply 00 by λλ.
p(λ)=determinant([987345210]+[-λ000-λ000-λ1])p(λ)=determinant987345210+λ000λ000λ1
p(λ)=determinant([987345210]+[-λ000-λ000-λ1])p(λ)=determinant987345210+λ000λ000λ1
Step 4.1.2.9
Multiply -11 by 11.
p(λ)=determinant([987345210]+[-λ000-λ000-λ])p(λ)=determinant987345210+λ000λ000λ
p(λ)=determinant([987345210]+[-λ000-λ000-λ])p(λ)=determinant987345210+λ000λ000λ
p(λ)=determinant([987345210]+[-λ000-λ000-λ])p(λ)=determinant987345210+λ000λ000λ
Step 4.2
Add the corresponding elements.
p(λ)=determinant[9-λ8+07+03+04-λ5+02+01+00-λ]p(λ)=determinant9λ8+07+03+04λ5+02+01+00λ
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 88 and 00.
p(λ)=determinant[9-λ87+03+04-λ5+02+01+00-λ]p(λ)=determinant9λ87+03+04λ5+02+01+00λ
Step 4.3.2
Add 77 and 00.
p(λ)=determinant[9-λ873+04-λ5+02+01+00-λ]p(λ)=determinant9λ873+04λ5+02+01+00λ
Step 4.3.3
Add 33 and 00.
p(λ)=determinant[9-λ8734-λ5+02+01+00-λ]p(λ)=determinant9λ8734λ5+02+01+00λ
Step 4.3.4
Add 55 and 00.
p(λ)=determinant[9-λ8734-λ52+01+00-λ]p(λ)=determinant9λ8734λ52+01+00λ
Step 4.3.5
Add 22 and 00.
p(λ)=determinant[9-λ8734-λ521+00-λ]p(λ)=determinant9λ8734λ521+00λ
Step 4.3.6
Add 11 and 00.
p(λ)=determinant[9-λ8734-λ5210-λ]p(λ)=determinant9λ8734λ5210λ
Step 4.3.7
Subtract λλ from 00.
p(λ)=determinant[9-λ8734-λ521-λ]p(λ)=determinant9λ8734λ521λ
p(λ)=determinant[9-λ8734-λ521-λ]p(λ)=determinant9λ8734λ521λ
p(λ)=determinant[9-λ8734-λ521-λ]p(λ)=determinant9λ8734λ521λ
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4-λ51-λ|4λ51λ
Step 5.1.4
Multiply element a11a11 by its cofactor.
(9-λ)|4-λ51-λ|(9λ)4λ51λ
Step 5.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|352-λ|352λ
Step 5.1.6
Multiply element a12a12 by its cofactor.
-8|352-λ|8352λ
Step 5.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|34-λ21|34λ21
Step 5.1.8
Multiply element a13a13 by its cofactor.
7|34-λ21|734λ21
Step 5.1.9
Add the terms together.
p(λ)=(9-λ)|4-λ51-λ|-8|352-λ|+7|34-λ21|p(λ)=(9λ)4λ51λ8352λ+734λ21
p(λ)=(9-λ)|4-λ51-λ|-8|352-λ|+7|34-λ21|p(λ)=(9λ)4λ51λ8352λ+734λ21
Step 5.2
Evaluate |4-λ51-λ|4λ51λ.
Tap for more steps...
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=(9-λ)((4-λ)(-λ)-15)-8|352-λ|+7|34-λ21|p(λ)=(9λ)((4λ)(λ)15)8352λ+734λ21
Step 5.2.2
Simplify the determinant.
Tap for more steps...
Step 5.2.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.1
Apply the distributive property.
p(λ)=(9-λ)(4(-λ)-λ(-λ)-15)-8|352-λ|+7|34-λ21|p(λ)=(9λ)(4(λ)λ(λ)15)8352λ+734λ21
Step 5.2.2.1.2
Multiply -1 by 4.
p(λ)=(9-λ)(-4λ-λ(-λ)-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=(9-λ)(-4λ-1-1λλ-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.4
Simplify each term.
Tap for more steps...
Step 5.2.2.1.4.1
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.2.1.4.1.1
Move λ.
p(λ)=(9-λ)(-4λ-1-1(λλ)-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.4.1.2
Multiply λ by λ.
p(λ)=(9-λ)(-4λ-1-1λ2-15)-8|352-λ|+7|34-λ21|
p(λ)=(9-λ)(-4λ-1-1λ2-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.4.2
Multiply -1 by -1.
p(λ)=(9-λ)(-4λ+1λ2-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.4.3
Multiply λ2 by 1.
p(λ)=(9-λ)(-4λ+λ2-15)-8|352-λ|+7|34-λ21|
p(λ)=(9-λ)(-4λ+λ2-15)-8|352-λ|+7|34-λ21|
Step 5.2.2.1.5
Multiply -1 by 5.
p(λ)=(9-λ)(-4λ+λ2-5)-8|352-λ|+7|34-λ21|
p(λ)=(9-λ)(-4λ+λ2-5)-8|352-λ|+7|34-λ21|
Step 5.2.2.2
Reorder -4λ and λ2.
p(λ)=(9-λ)(λ2-4λ-5)-8|352-λ|+7|34-λ21|
p(λ)=(9-λ)(λ2-4λ-5)-8|352-λ|+7|34-λ21|
p(λ)=(9-λ)(λ2-4λ-5)-8|352-λ|+7|34-λ21|
Step 5.3
Evaluate |352-λ|.
Tap for more steps...
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(9-λ)(λ2-4λ-5)-8(3(-λ)-25)+7|34-λ21|
Step 5.3.2
Simplify each term.
Tap for more steps...
Step 5.3.2.1
Multiply -1 by 3.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-25)+7|34-λ21|
Step 5.3.2.2
Multiply -2 by 5.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7|34-λ21|
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7|34-λ21|
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7|34-λ21|
Step 5.4
Evaluate |34-λ21|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(31-2(4-λ))
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Multiply 3 by 1.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(3-2(4-λ))
Step 5.4.2.1.2
Apply the distributive property.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(3-24-2(-λ))
Step 5.4.2.1.3
Multiply -2 by 4.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(3-8-2(-λ))
Step 5.4.2.1.4
Multiply -1 by -2.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(3-8+2λ)
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(3-8+2λ)
Step 5.4.2.2
Subtract 8 from 3.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(-5+2λ)
Step 5.4.2.3
Reorder -5 and 2λ.
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(2λ-5)
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(2λ-5)
p(λ)=(9-λ)(λ2-4λ-5)-8(-3λ-10)+7(2λ-5)
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Simplify each term.
Tap for more steps...
Step 5.5.1.1
Expand (9-λ)(λ2-4λ-5) by multiplying each term in the first expression by each term in the second expression.
p(λ)=9λ2+9(-4λ)+9-5-λλ2-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2
Simplify each term.
Tap for more steps...
Step 5.5.1.2.1
Multiply -4 by 9.
p(λ)=9λ2-36λ+9-5-λλ2-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.2
Multiply 9 by -5.
p(λ)=9λ2-36λ-45-λλ2-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 5.5.1.2.3.1
Move λ2.
p(λ)=9λ2-36λ-45-(λ2λ)-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.3.2
Multiply λ2 by λ.
Tap for more steps...
Step 5.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=9λ2-36λ-45-(λ2λ1)-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=9λ2-36λ-45-λ2+1-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
p(λ)=9λ2-36λ-45-λ2+1-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.3.3
Add 2 and 1.
p(λ)=9λ2-36λ-45-λ3-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
p(λ)=9λ2-36λ-45-λ3-λ(-4λ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=9λ2-36λ-45-λ3-1-4λλ-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.5.1.2.5.1
Move λ.
p(λ)=9λ2-36λ-45-λ3-1-4(λλ)-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.5.2
Multiply λ by λ.
p(λ)=9λ2-36λ-45-λ3-1-4λ2-λ-5-8(-3λ-10)+7(2λ-5)
p(λ)=9λ2-36λ-45-λ3-1-4λ2-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.6
Multiply -1 by -4.
p(λ)=9λ2-36λ-45-λ3+4λ2-λ-5-8(-3λ-10)+7(2λ-5)
Step 5.5.1.2.7
Multiply -5 by -1.
p(λ)=9λ2-36λ-45-λ3+4λ2+5λ-8(-3λ-10)+7(2λ-5)
p(λ)=9λ2-36λ-45-λ3+4λ2+5λ-8(-3λ-10)+7(2λ-5)
Step 5.5.1.3
Add 9λ2 and 4λ2.
p(λ)=13λ2-36λ-45-λ3+5λ-8(-3λ-10)+7(2λ-5)
Step 5.5.1.4
Add -36λ and 5λ.
p(λ)=13λ2-31λ-45-λ3-8(-3λ-10)+7(2λ-5)
Step 5.5.1.5
Apply the distributive property.
p(λ)=13λ2-31λ-45-λ3-8(-3λ)-8-10+7(2λ-5)
Step 5.5.1.6
Multiply -3 by -8.
p(λ)=13λ2-31λ-45-λ3+24λ-8-10+7(2λ-5)
Step 5.5.1.7
Multiply -8 by -10.
p(λ)=13λ2-31λ-45-λ3+24λ+80+7(2λ-5)
Step 5.5.1.8
Apply the distributive property.
p(λ)=13λ2-31λ-45-λ3+24λ+80+7(2λ)+7-5
Step 5.5.1.9
Multiply 2 by 7.
p(λ)=13λ2-31λ-45-λ3+24λ+80+14λ+7-5
Step 5.5.1.10
Multiply 7 by -5.
p(λ)=13λ2-31λ-45-λ3+24λ+80+14λ-35
p(λ)=13λ2-31λ-45-λ3+24λ+80+14λ-35
Step 5.5.2
Add -31λ and 24λ.
p(λ)=13λ2-7λ-45-λ3+80+14λ-35
Step 5.5.3
Add -7λ and 14λ.
p(λ)=13λ2+7λ-45-λ3+80-35
Step 5.5.4
Add -45 and 80.
p(λ)=13λ2+7λ-λ3+35-35
Step 5.5.5
Combine the opposite terms in 13λ2+7λ-λ3+35-35.
Tap for more steps...
Step 5.5.5.1
Subtract 35 from 35.
p(λ)=13λ2+7λ-λ3+0
Step 5.5.5.2
Add 13λ2+7λ-λ3 and 0.
p(λ)=13λ2+7λ-λ3
p(λ)=13λ2+7λ-λ3
Step 5.5.6
Move 7λ.
p(λ)=13λ2-λ3+7λ
Step 5.5.7
Reorder 13λ2 and -λ3.
p(λ)=-λ3+13λ2+7λ
p(λ)=-λ3+13λ2+7λ
p(λ)=-λ3+13λ2+7λ
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay