Examples

Find the Vertex Form
x2-y2+12x-12y-3=0
Step 1
Add 3 to both sides of the equation.
x2-y2+12x-12y=3
Step 2
Complete the square for x2+12x.
Tap for more steps...
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=12
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=1221
Step 2.3.2
Cancel the common factor of 12 and 2.
Tap for more steps...
Step 2.3.2.1
Factor 2 out of 12.
d=2621
Step 2.3.2.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.2.1
Factor 2 out of 21.
d=262(1)
Step 2.3.2.2.2
Cancel the common factor.
d=2621
Step 2.3.2.2.3
Rewrite the expression.
d=61
Step 2.3.2.2.4
Divide 6 by 1.
d=6
d=6
d=6
d=6
Step 2.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-12241
Step 2.4.2
Simplify the right side.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise 12 to the power of 2.
e=0-14441
Step 2.4.2.1.2
Multiply 4 by 1.
e=0-1444
Step 2.4.2.1.3
Divide 144 by 4.
e=0-136
Step 2.4.2.1.4
Multiply -1 by 36.
e=0-36
e=0-36
Step 2.4.2.2
Subtract 36 from 0.
e=-36
e=-36
e=-36
Step 2.5
Substitute the values of a, d, and e into the vertex form (x+6)2-36.
(x+6)2-36
(x+6)2-36
Step 3
Substitute (x+6)2-36 for x2+12x in the equation x2-y2+12x-12y=3.
(x+6)2-36-y2-12y=3
Step 4
Move -36 to the right side of the equation by adding 36 to both sides.
(x+6)2-y2-12y=3+36
Step 5
Complete the square for -y2-12y.
Tap for more steps...
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=-12
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-122-1
Step 5.3.2
Simplify the right side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of -12 and 2.
Tap for more steps...
Step 5.3.2.1.1
Factor 2 out of -12.
d=2-62-1
Step 5.3.2.1.2
Move the negative one from the denominator of -6-1.
d=-1-6
d=-1-6
Step 5.3.2.2
Rewrite -1-6 as --6.
d=--6
Step 5.3.2.3
Multiply -1 by -6.
d=6
d=6
d=6
Step 5.4
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-12)24-1
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Raise -12 to the power of 2.
e=0-1444-1
Step 5.4.2.1.2
Multiply 4 by -1.
e=0-144-4
Step 5.4.2.1.3
Divide 144 by -4.
e=0--36
Step 5.4.2.1.4
Multiply -1 by -36.
e=0+36
e=0+36
Step 5.4.2.2
Add 0 and 36.
e=36
e=36
e=36
Step 5.5
Substitute the values of a, d, and e into the vertex form -(y+6)2+36.
-(y+6)2+36
-(y+6)2+36
Step 6
Substitute -(y+6)2+36 for -y2-12y in the equation x2-y2+12x-12y=3.
(x+6)2-(y+6)2+36=3+36
Step 7
Move 36 to the right side of the equation by adding 36 to both sides.
(x+6)2-(y+6)2=3+36-36
Step 8
Simplify 3+36-36.
Tap for more steps...
Step 8.1
Add 3 and 36.
(x+6)2-(y+6)2=39-36
Step 8.2
Subtract 36 from 39.
(x+6)2-(y+6)2=3
(x+6)2-(y+6)2=3
Step 9
Divide each term by 3 to make the right side equal to one.
(x+6)23-(y+6)23=33
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+6)23-(y+6)23=1
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]