Examples
x2-y2+12x-12y-3=0
Step 1
Add 3 to both sides of the equation.
x2-y2+12x-12y=3
Step 2
Step 2.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=12
c=0
Step 2.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 2.3
Find the value of d using the formula d=b2a.
Step 2.3.1
Substitute the values of a and b into the formula d=b2a.
d=122⋅1
Step 2.3.2
Cancel the common factor of 12 and 2.
Step 2.3.2.1
Factor 2 out of 12.
d=2⋅62⋅1
Step 2.3.2.2
Cancel the common factors.
Step 2.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅62(1)
Step 2.3.2.2.2
Cancel the common factor.
d=2⋅62⋅1
Step 2.3.2.2.3
Rewrite the expression.
d=61
Step 2.3.2.2.4
Divide 6 by 1.
d=6
d=6
d=6
d=6
Step 2.4
Find the value of e using the formula e=c-b24a.
Step 2.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-1224⋅1
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Raise 12 to the power of 2.
e=0-1444⋅1
Step 2.4.2.1.2
Multiply 4 by 1.
e=0-1444
Step 2.4.2.1.3
Divide 144 by 4.
e=0-1⋅36
Step 2.4.2.1.4
Multiply -1 by 36.
e=0-36
e=0-36
Step 2.4.2.2
Subtract 36 from 0.
e=-36
e=-36
e=-36
Step 2.5
Substitute the values of a, d, and e into the vertex form (x+6)2-36.
(x+6)2-36
(x+6)2-36
Step 3
Substitute (x+6)2-36 for x2+12x in the equation x2-y2+12x-12y=3.
(x+6)2-36-y2-12y=3
Step 4
Move -36 to the right side of the equation by adding 36 to both sides.
(x+6)2-y2-12y=3+36
Step 5
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=-12
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-122⋅-1
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Cancel the common factor of -12 and 2.
Step 5.3.2.1.1
Factor 2 out of -12.
d=2⋅-62⋅-1
Step 5.3.2.1.2
Move the negative one from the denominator of -6-1.
d=-1⋅-6
d=-1⋅-6
Step 5.3.2.2
Rewrite -1⋅-6 as --6.
d=--6
Step 5.3.2.3
Multiply -1 by -6.
d=6
d=6
d=6
Step 5.4
Find the value of e using the formula e=c-b24a.
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-12)24⋅-1
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Raise -12 to the power of 2.
e=0-1444⋅-1
Step 5.4.2.1.2
Multiply 4 by -1.
e=0-144-4
Step 5.4.2.1.3
Divide 144 by -4.
e=0--36
Step 5.4.2.1.4
Multiply -1 by -36.
e=0+36
e=0+36
Step 5.4.2.2
Add 0 and 36.
e=36
e=36
e=36
Step 5.5
Substitute the values of a, d, and e into the vertex form -(y+6)2+36.
-(y+6)2+36
-(y+6)2+36
Step 6
Substitute -(y+6)2+36 for -y2-12y in the equation x2-y2+12x-12y=3.
(x+6)2-(y+6)2+36=3+36
Step 7
Move 36 to the right side of the equation by adding 36 to both sides.
(x+6)2-(y+6)2=3+36-36
Step 8
Step 8.1
Add 3 and 36.
(x+6)2-(y+6)2=39-36
Step 8.2
Subtract 36 from 39.
(x+6)2-(y+6)2=3
(x+6)2-(y+6)2=3
Step 9
Divide each term by 3 to make the right side equal to one.
(x+6)23-(y+6)23=33
Step 10
Simplify each term in the equation in order to set the right side equal to 1. The standard form of an ellipse or hyperbola requires the right side of the equation be 1.
(x+6)23-(y+6)23=1