Examples
f(x)=x2+6x-36f(x)=x2+6x−36
Step 1
Write f(x)=x2+6x-36f(x)=x2+6x−36 as an equation.
y=x2+6x-36y=x2+6x−36
Step 2
Step 2.1
Complete the square for x2+6x-36x2+6x−36.
Step 2.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=6b=6
c=-36c=−36
Step 2.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 2.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 2.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=62⋅1d=62⋅1
Step 2.1.3.2
Cancel the common factor of 66 and 22.
Step 2.1.3.2.1
Factor 22 out of 66.
d=2⋅32⋅1d=2⋅32⋅1
Step 2.1.3.2.2
Cancel the common factors.
Step 2.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2⋅32(1)d=2⋅32(1)
Step 2.1.3.2.2.2
Cancel the common factor.
d=2⋅32⋅1
Step 2.1.3.2.2.3
Rewrite the expression.
d=31
Step 2.1.3.2.2.4
Divide 3 by 1.
d=3
d=3
d=3
d=3
Step 2.1.4
Find the value of e using the formula e=c-b24a.
Step 2.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-36-624⋅1
Step 2.1.4.2
Simplify the right side.
Step 2.1.4.2.1
Simplify each term.
Step 2.1.4.2.1.1
Raise 6 to the power of 2.
e=-36-364⋅1
Step 2.1.4.2.1.2
Multiply 4 by 1.
e=-36-364
Step 2.1.4.2.1.3
Divide 36 by 4.
e=-36-1⋅9
Step 2.1.4.2.1.4
Multiply -1 by 9.
e=-36-9
e=-36-9
Step 2.1.4.2.2
Subtract 9 from -36.
e=-45
e=-45
e=-45
Step 2.1.5
Substitute the values of a, d, and e into the vertex form (x+3)2-45.
(x+3)2-45
(x+3)2-45
Step 2.2
Set y equal to the new right side.
y=(x+3)2-45
y=(x+3)2-45
Step 3
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=-3
k=-45
Step 4
Since the value of a is positive, the parabola opens up.
Opens Up
Step 5
Find the vertex (h,k).
(-3,-45)
Step 6
Step 6.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 6.2
Substitute the value of a into the formula.
14⋅1
Step 6.3
Cancel the common factor of 1.
Step 6.3.1
Cancel the common factor.
14⋅1
Step 6.3.2
Rewrite the expression.
14
14
14
Step 7
Step 7.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 7.2
Substitute the known values of h, p, and k into the formula and simplify.
(-3,-1794)
(-3,-1794)
Step 8
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=-3
Step 9
Step 9.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 9.2
Substitute the known values of p and k into the formula and simplify.
y=-1814
y=-1814
Step 10
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (-3,-45)
Focus: (-3,-1794)
Axis of Symmetry: x=-3
Directrix: y=-1814
Step 11