Examples
(-1,2)(−1,2) , (5,2)(5,2) , (7,2)(7,2)
Step 1
There are two general equations for an ellipse.
Horizontal ellipse equation (x-h)2a2+(y-k)2b2=1(x−h)2a2+(y−k)2b2=1
Vertical ellipse equation (y-k)2a2+(x-h)2b2=1(y−k)2a2+(x−h)2b2=1
Step 2
Step 2.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 2.2
Substitute the actual values of the points into the distance formula.
a=√(7-(-1))2+(2-2)2a=√(7−(−1))2+(2−2)2
Step 2.3
Simplify.
Step 2.3.1
Multiply -1−1 by -1−1.
a=√(7+1)2+(2-2)2a=√(7+1)2+(2−2)2
Step 2.3.2
Add 77 and 11.
a=√82+(2-2)2a=√82+(2−2)2
Step 2.3.3
Raise 88 to the power of 22.
a=√64+(2-2)2a=√64+(2−2)2
Step 2.3.4
Subtract 22 from 22.
a=√64+02a=√64+02
Step 2.3.5
Raising 00 to any positive power yields 00.
a=√64+0a=√64+0
Step 2.3.6
Add 6464 and 00.
a=√64a=√64
Step 2.3.7
Rewrite 6464 as 8282.
a=√82a=√82
Step 2.3.8
Pull terms out from under the radical, assuming positive real numbers.
a=8a=8
a=8a=8
a=8a=8
Step 3
Step 3.1
Use the distance formula to determine the distance between the two points.
Distance=√(x2-x1)2+(y2-y1)2Distance=√(x2−x1)2+(y2−y1)2
Step 3.2
Substitute the actual values of the points into the distance formula.
c=√(5-(-1))2+(2-2)2
Step 3.3
Simplify.
Step 3.3.1
Multiply -1 by -1.
c=√(5+1)2+(2-2)2
Step 3.3.2
Add 5 and 1.
c=√62+(2-2)2
Step 3.3.3
Raise 6 to the power of 2.
c=√36+(2-2)2
Step 3.3.4
Subtract 2 from 2.
c=√36+02
Step 3.3.5
Raising 0 to any positive power yields 0.
c=√36+0
Step 3.3.6
Add 36 and 0.
c=√36
Step 3.3.7
Rewrite 36 as 62.
c=√62
Step 3.3.8
Pull terms out from under the radical, assuming positive real numbers.
c=6
c=6
c=6
Step 4
Step 4.1
Rewrite the equation as (8)2-b2=62.
(8)2-b2=62
Step 4.2
Raise 8 to the power of 2.
64-b2=62
Step 4.3
Raise 6 to the power of 2.
64-b2=36
Step 4.4
Move all terms not containing b to the right side of the equation.
Step 4.4.1
Subtract 64 from both sides of the equation.
-b2=36-64
Step 4.4.2
Subtract 64 from 36.
-b2=-28
-b2=-28
Step 4.5
Divide each term in -b2=-28 by -1 and simplify.
Step 4.5.1
Divide each term in -b2=-28 by -1.
-b2-1=-28-1
Step 4.5.2
Simplify the left side.
Step 4.5.2.1
Dividing two negative values results in a positive value.
b21=-28-1
Step 4.5.2.2
Divide b2 by 1.
b2=-28-1
b2=-28-1
Step 4.5.3
Simplify the right side.
Step 4.5.3.1
Divide -28 by -1.
b2=28
b2=28
b2=28
Step 4.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√28
Step 4.7
Simplify ±√28.
Step 4.7.1
Rewrite 28 as 22⋅7.
Step 4.7.1.1
Factor 4 out of 28.
b=±√4(7)
Step 4.7.1.2
Rewrite 4 as 22.
b=±√22⋅7
b=±√22⋅7
Step 4.7.2
Pull terms out from under the radical.
b=±2√7
b=±2√7
Step 4.8
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.8.1
First, use the positive value of the ± to find the first solution.
b=2√7
Step 4.8.2
Next, use the negative value of the ± to find the second solution.
b=-2√7
Step 4.8.3
The complete solution is the result of both the positive and negative portions of the solution.
b=2√7,-2√7
b=2√7,-2√7
b=2√7,-2√7
Step 5
b is a distance, which means it should be a positive number.
b=2√7
Step 6
Step 6.1
Slope is equal to the change in y over the change in x, or rise over run.
m=change in ychange in x
Step 6.2
The change in x is equal to the difference in x-coordinates (also called run), and the change in y is equal to the difference in y-coordinates (also called rise).
m=y2-y1x2-x1
Step 6.3
Substitute in the values of x and y into the equation to find the slope.
m=2-(2)-1-(5)
Step 6.4
Simplify.
Step 6.4.1
Simplify the numerator.
Step 6.4.1.1
Multiply -1 by 2.
m=2-2-1-(5)
Step 6.4.1.2
Subtract 2 from 2.
m=0-1-(5)
m=0-1-(5)
Step 6.4.2
Simplify the denominator.
Step 6.4.2.1
Multiply -1 by 5.
m=0-1-5
Step 6.4.2.2
Subtract 5 from -1.
m=0-6
m=0-6
Step 6.4.3
Divide 0 by -6.
m=0
m=0
Step 6.5
The general equation for a horizontal ellipse is (x-h)2a2+(y-k)2b2=1.
(x-h)2a2+(y-k)2b2=1
(x-h)2a2+(y-k)2b2=1
Step 7
Substitute the values h=-1, k=2, a=8, and b=2√7 into (x-h)2a2+(y-k)2b2=1 to get the ellipse equation (x-(-1))2(8)2+(y-(2))2(2√7)2=1.
(x-(-1))2(8)2+(y-(2))2(2√7)2=1
Step 8
Step 8.1
Multiply -1 by -1.
(x+1)282+(y-(2))2(2√7)2=1
Step 8.2
Raise 8 to the power of 2.
(x+1)264+(y-(2))2(2√7)2=1
Step 8.3
Multiply -1 by 2.
(x+1)264+(y-2)2(2√7)2=1
Step 8.4
Simplify the denominator.
Step 8.4.1
Apply the product rule to 2√7.
(x+1)264+(y-2)222√72=1
Step 8.4.2
Raise 2 to the power of 2.
(x+1)264+(y-2)24√72=1
Step 8.4.3
Rewrite √72 as 7.
Step 8.4.3.1
Use n√ax=axn to rewrite √7 as 712.
(x+1)264+(y-2)24(712)2=1
Step 8.4.3.2
Apply the power rule and multiply exponents, (am)n=amn.
(x+1)264+(y-2)24⋅712⋅2=1
Step 8.4.3.3
Combine 12 and 2.
(x+1)264+(y-2)24⋅722=1
Step 8.4.3.4
Cancel the common factor of 2.
Step 8.4.3.4.1
Cancel the common factor.
(x+1)264+(y-2)24⋅722=1
Step 8.4.3.4.2
Rewrite the expression.
(x+1)264+(y-2)24⋅7=1
(x+1)264+(y-2)24⋅7=1
Step 8.4.3.5
Evaluate the exponent.
(x+1)264+(y-2)24⋅7=1
(x+1)264+(y-2)24⋅7=1
(x+1)264+(y-2)24⋅7=1
Step 8.5
Multiply 4 by 7.
(x+1)264+(y-2)228=1
(x+1)264+(y-2)228=1
Step 9