Examples
x-y=4x−y=4 , 4x-y=-54x−y=−5
Step 1
To find the intersection of the line through a point (p,q,r)(p,q,r) perpendicular to plane P1P1 ax+by+cz=dax+by+cz=d and plane P2P2 ex+fy+gz=hex+fy+gz=h:
1. Find the normal vectors of plane P1P1 and plane P2P2 where the normal vectors are n1=⟨a,b,c⟩n1=⟨a,b,c⟩ and n2=⟨e,f,g⟩n2=⟨e,f,g⟩. Check to see if the dot product is 0.
2. Create a set of parametric equations such that x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct.
3. Substitute these equations into the equation for plane P2P2 such that e(p+at)+f(q+bt)+g(r+ct)=he(p+at)+f(q+bt)+g(r+ct)=h and solve for tt.
4. Using the value of tt, solve the parametric equations x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct for tt to find the intersection (x,y,z)(x,y,z).
Step 2
Step 2.1
P1P1 is x-y=4x−y=4. Find the normal vector n1=⟨a,b,c⟩n1=⟨a,b,c⟩ from the plane equation of the form ax+by+cz=dax+by+cz=d.
n1=⟨1,-1,0⟩n1=⟨1,−1,0⟩
Step 2.2
P2P2 is 4x-y=-54x−y=−5. Find the normal vector n2=⟨e,f,g⟩n2=⟨e,f,g⟩ from the plane equation of the form ex+fy+gz=hex+fy+gz=h.
n2=⟨4,-1,0⟩n2=⟨4,−1,0⟩
Step 2.3
Calculate the dot product of n1n1 and n2n2 by summing the products of the corresponding xx, yy, and zz values in the normal vectors.
1⋅4-1⋅-1+0⋅01⋅4−1⋅−1+0⋅0
Step 2.4
Simplify the dot product.
Step 2.4.1
Remove parentheses.
1⋅4-1⋅-1+0⋅01⋅4−1⋅−1+0⋅0
Step 2.4.2
Simplify each term.
Step 2.4.2.1
Multiply 44 by 11.
4-1⋅-1+0⋅04−1⋅−1+0⋅0
Step 2.4.2.2
Multiply -1−1 by -1−1.
4+1+0⋅04+1+0⋅0
Step 2.4.2.3
Multiply 00 by 00.
4+1+04+1+0
4+1+04+1+0
Step 2.4.3
Simplify by adding numbers.
Step 2.4.3.1
Add 44 and 11.
5+05+0
Step 2.4.3.2
Add 55 and 00.
55
55
55
55
Step 3
Next, build a set of parametric equations x=p+atx=p+at,y=q+bty=q+bt, and z=r+ctz=r+ct using the origin (0,0,0)(0,0,0) for the point (p,q,r)(p,q,r) and the values from the normal vector 55 for the values of aa, bb, and cc. This set of parametric equations represents the line through the origin that is perpendicular to P1P1 x-y=4x−y=4.
x=0+1⋅tx=0+1⋅t
y=0+-1⋅ty=0+−1⋅t
z=0+0⋅tz=0+0⋅t
Step 4
Substitute the expression for xx, yy, and zz into the equation for P2P2 4x-y=-54x−y=−5.
4(0+1⋅t)-(0-1⋅t)=-54(0+1⋅t)−(0−1⋅t)=−5
Step 5
Step 5.1
Simplify 4(0+1⋅t)-(0-1⋅t)4(0+1⋅t)−(0−1⋅t).
Step 5.1.1
Combine the opposite terms in 4(0+1⋅t)-(0-1⋅t)4(0+1⋅t)−(0−1⋅t).
Step 5.1.1.1
Add 00 and 1⋅t1⋅t.
4(1⋅t)-(0-1⋅t)=-54(1⋅t)−(0−1⋅t)=−5
Step 5.1.1.2
Subtract 1⋅t1⋅t from 00.
4(1⋅t)-(-1⋅t)=-54(1⋅t)−(−1⋅t)=−5
4(1⋅t)-(-1⋅t)=-54(1⋅t)−(−1⋅t)=−5
Step 5.1.2
Simplify each term.
Step 5.1.2.1
Multiply tt by 11.
4t-(-1⋅t)=-54t−(−1⋅t)=−5
Step 5.1.2.2
Rewrite -1t−1t as -t−t.
4t--t=-54t−−t=−5
Step 5.1.2.3
Multiply --t−−t.
Step 5.1.2.3.1
Multiply -1−1 by -1−1.
4t+1t=-54t+1t=−5
Step 5.1.2.3.2
Multiply tt by 11.
4t+t=-54t+t=−5
4t+t=-54t+t=−5
4t+t=-54t+t=−5
Step 5.1.3
Add 4t4t and tt.
5t=-55t=−5
5t=-55t=−5
Step 5.2
Divide each term in 5t=-55t=−5 by 55 and simplify.
Step 5.2.1
Divide each term in 5t=-55t=−5 by 55.
5t5=-555t5=−55
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of 55.
Step 5.2.2.1.1
Cancel the common factor.
5t5=-555t5=−55
Step 5.2.2.1.2
Divide tt by 11.
t=-55t=−55
t=-55t=−55
t=-55t=−55
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Divide -5−5 by 55.
t=-1t=−1
t=-1t=−1
t=-1t=−1
t=-1t=−1
Step 6
Step 6.1
Solve the equation for xx.
Step 6.1.1
Remove parentheses.
x=0+1⋅(-1)x=0+1⋅(−1)
Step 6.1.2
Simplify 0+1⋅(-1)0+1⋅(−1).
Step 6.1.2.1
Multiply -1−1 by 11.
x=0-1x=0−1
Step 6.1.2.2
Subtract 11 from 00.
x=-1x=−1
x=-1x=−1
x=-1x=−1
Step 6.2
Solve the equation for yy.
Step 6.2.1
Remove parentheses.
y=0-1⋅-1y=0−1⋅−1
Step 6.2.2
Simplify 0-1⋅-10−1⋅−1.
Step 6.2.2.1
Multiply -1−1 by -1−1.
y=0+1y=0+1
Step 6.2.2.2
Add 00 and 11.
y=1y=1
y=1y=1
y=1y=1
Step 6.3
Solve the equation for zz.
Step 6.3.1
Remove parentheses.
z=0+0⋅(-1)z=0+0⋅(−1)
Step 6.3.2
Simplify 0+0⋅(-1)0+0⋅(−1).
Step 6.3.2.1
Multiply 00 by -1−1.
z=0+0z=0+0
Step 6.3.2.2
Add 00 and 00.
z=0z=0
z=0z=0
z=0z=0
Step 6.4
The solved parametric equations for xx, yy, and zz.
x=-1x=−1
y=1y=1
z=0z=0
x=-1x=−1
y=1y=1
z=0z=0
Step 7
Using the values calculated for xx, yy, and zz, the intersection point is found to be (-1,1,0)(−1,1,0).
(-1,1,0)(−1,1,0)