Calculus Examples

1-4x2dx14x2dx
Step 1
Let x=12sin(t)x=12sin(t), where -π2tπ2π2tπ2. Then dx=cos(t)2dtdx=cos(t)2dt. Note that since -π2tπ2π2tπ2, cos(t)2cos(t)2 is positive.
1-4(12sin(t))2cos(t)2dt14(12sin(t))2cos(t)2dt
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify 1-4(12sin(t))214(12sin(t))2.
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Combine 1212 and sin(t)sin(t).
1-4(sin(t)2)2cos(t)2dt14(sin(t)2)2cos(t)2dt
Step 2.1.1.2
Apply the product rule to sin(t)2sin(t)2.
1-4sin2(t)22cos(t)2dt14sin2(t)22cos(t)2dt
Step 2.1.1.3
Raise 22 to the power of 22.
1-4sin2(t)4cos(t)2dt14sin2(t)4cos(t)2dt
Step 2.1.1.4
Cancel the common factor of 44.
Tap for more steps...
Step 2.1.1.4.1
Factor 44 out of -44.
1+4(-1)sin2(t)4cos(t)2dt1+4(1)sin2(t)4cos(t)2dt
Step 2.1.1.4.2
Cancel the common factor.
1+4-1sin2(t)4cos(t)2dt
Step 2.1.1.4.3
Rewrite the expression.
1-1sin2(t)cos(t)2dt
1-1sin2(t)cos(t)2dt
Step 2.1.1.5
Rewrite -1sin2(t) as -sin2(t).
1-sin2(t)cos(t)2dt
1-sin2(t)cos(t)2dt
Step 2.1.2
Apply pythagorean identity.
cos2(t)cos(t)2dt
Step 2.1.3
Pull terms out from under the radical, assuming positive real numbers.
cos(t)cos(t)2dt
cos(t)cos(t)2dt
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Combine cos(t) and cos(t)2.
cos(t)cos(t)2dt
Step 2.2.2
Raise cos(t) to the power of 1.
cos1(t)cos(t)2dt
Step 2.2.3
Raise cos(t) to the power of 1.
cos1(t)cos1(t)2dt
Step 2.2.4
Use the power rule aman=am+n to combine exponents.
cos(t)1+12dt
Step 2.2.5
Add 1 and 1.
cos2(t)2dt
cos2(t)2dt
cos2(t)2dt
Step 3
Since 12 is constant with respect to t, move 12 out of the integral.
12cos2(t)dt
Step 4
Use the half-angle formula to rewrite cos2(t) as 1+cos(2t)2.
121+cos(2t)2dt
Step 5
Since 12 is constant with respect to t, move 12 out of the integral.
12(121+cos(2t)dt)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Multiply 12 by 12.
1221+cos(2t)dt
Step 6.2
Multiply 2 by 2.
141+cos(2t)dt
141+cos(2t)dt
Step 7
Split the single integral into multiple integrals.
14(dt+cos(2t)dt)
Step 8
Apply the constant rule.
14(t+C+cos(2t)dt)
Step 9
Let u=2t. Then du=2dt, so 12du=dt. Rewrite using u and du.
Tap for more steps...
Step 9.1
Let u=2t. Find dudt.
Tap for more steps...
Step 9.1.1
Differentiate 2t.
ddt[2t]
Step 9.1.2
Since 2 is constant with respect to t, the derivative of 2t with respect to t is 2ddt[t].
2ddt[t]
Step 9.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
21
Step 9.1.4
Multiply 2 by 1.
2
2
Step 9.2
Rewrite the problem using u and du.
14(t+C+cos(u)12du)
14(t+C+cos(u)12du)
Step 10
Combine cos(u) and 12.
14(t+C+cos(u)2du)
Step 11
Since 12 is constant with respect to u, move 12 out of the integral.
14(t+C+12cos(u)du)
Step 12
The integral of cos(u) with respect to u is sin(u).
14(t+C+12(sin(u)+C))
Step 13
Simplify.
14(t+12sin(u))+C
Step 14
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 14.1
Replace all occurrences of t with arcsin(2x).
14(arcsin(2x)+12sin(u))+C
Step 14.2
Replace all occurrences of u with 2t.
14(arcsin(2x)+12sin(2t))+C
Step 14.3
Replace all occurrences of t with arcsin(2x).
14(arcsin(2x)+12sin(2arcsin(2x)))+C
14(arcsin(2x)+12sin(2arcsin(2x)))+C
Step 15
Simplify.
Tap for more steps...
Step 15.1
Combine 12 and sin(2arcsin(2x)).
14(arcsin(2x)+sin(2arcsin(2x))2)+C
Step 15.2
Apply the distributive property.
14arcsin(2x)+14sin(2arcsin(2x))2+C
Step 15.3
Combine 14 and arcsin(2x).
arcsin(2x)4+14sin(2arcsin(2x))2+C
Step 15.4
Multiply 14sin(2arcsin(2x))2.
Tap for more steps...
Step 15.4.1
Multiply 14 by sin(2arcsin(2x))2.
arcsin(2x)4+sin(2arcsin(2x))42+C
Step 15.4.2
Multiply 4 by 2.
arcsin(2x)4+sin(2arcsin(2x))8+C
arcsin(2x)4+sin(2arcsin(2x))8+C
arcsin(2x)4+sin(2arcsin(2x))8+C
Step 16
Reorder terms.
14arcsin(2x)+18sin(2arcsin(2x))+C
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay