Calculus Examples
∫√1-4x2dx∫√1−4x2dx
Step 1
Let x=12sin(t)x=12sin(t), where -π2≤t≤π2−π2≤t≤π2. Then dx=cos(t)2dtdx=cos(t)2dt. Note that since -π2≤t≤π2−π2≤t≤π2, cos(t)2cos(t)2 is positive.
∫√1-4(12sin(t))2cos(t)2dt∫√1−4(12sin(t))2cos(t)2dt
Step 2
Step 2.1
Simplify √1-4(12sin(t))2√1−4(12sin(t))2.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Combine 1212 and sin(t)sin(t).
∫√1-4(sin(t)2)2cos(t)2dt∫√1−4(sin(t)2)2cos(t)2dt
Step 2.1.1.2
Apply the product rule to sin(t)2sin(t)2.
∫√1-4sin2(t)22cos(t)2dt∫√1−4sin2(t)22cos(t)2dt
Step 2.1.1.3
Raise 22 to the power of 22.
∫√1-4sin2(t)4cos(t)2dt∫√1−4sin2(t)4cos(t)2dt
Step 2.1.1.4
Cancel the common factor of 44.
Step 2.1.1.4.1
Factor 44 out of -4−4.
∫√1+4(-1)sin2(t)4cos(t)2dt∫√1+4(−1)sin2(t)4cos(t)2dt
Step 2.1.1.4.2
Cancel the common factor.
∫√1+4⋅-1sin2(t)4cos(t)2dt
Step 2.1.1.4.3
Rewrite the expression.
∫√1-1sin2(t)cos(t)2dt
∫√1-1sin2(t)cos(t)2dt
Step 2.1.1.5
Rewrite -1sin2(t) as -sin2(t).
∫√1-sin2(t)cos(t)2dt
∫√1-sin2(t)cos(t)2dt
Step 2.1.2
Apply pythagorean identity.
∫√cos2(t)cos(t)2dt
Step 2.1.3
Pull terms out from under the radical, assuming positive real numbers.
∫cos(t)cos(t)2dt
∫cos(t)cos(t)2dt
Step 2.2
Simplify.
Step 2.2.1
Combine cos(t) and cos(t)2.
∫cos(t)cos(t)2dt
Step 2.2.2
Raise cos(t) to the power of 1.
∫cos1(t)cos(t)2dt
Step 2.2.3
Raise cos(t) to the power of 1.
∫cos1(t)cos1(t)2dt
Step 2.2.4
Use the power rule aman=am+n to combine exponents.
∫cos(t)1+12dt
Step 2.2.5
Add 1 and 1.
∫cos2(t)2dt
∫cos2(t)2dt
∫cos2(t)2dt
Step 3
Since 12 is constant with respect to t, move 12 out of the integral.
12∫cos2(t)dt
Step 4
Use the half-angle formula to rewrite cos2(t) as 1+cos(2t)2.
12∫1+cos(2t)2dt
Step 5
Since 12 is constant with respect to t, move 12 out of the integral.
12(12∫1+cos(2t)dt)
Step 6
Step 6.1
Multiply 12 by 12.
12⋅2∫1+cos(2t)dt
Step 6.2
Multiply 2 by 2.
14∫1+cos(2t)dt
14∫1+cos(2t)dt
Step 7
Split the single integral into multiple integrals.
14(∫dt+∫cos(2t)dt)
Step 8
Apply the constant rule.
14(t+C+∫cos(2t)dt)
Step 9
Step 9.1
Let u=2t. Find dudt.
Step 9.1.1
Differentiate 2t.
ddt[2t]
Step 9.1.2
Since 2 is constant with respect to t, the derivative of 2t with respect to t is 2ddt[t].
2ddt[t]
Step 9.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
2⋅1
Step 9.1.4
Multiply 2 by 1.
2
2
Step 9.2
Rewrite the problem using u and du.
14(t+C+∫cos(u)12du)
14(t+C+∫cos(u)12du)
Step 10
Combine cos(u) and 12.
14(t+C+∫cos(u)2du)
Step 11
Since 12 is constant with respect to u, move 12 out of the integral.
14(t+C+12∫cos(u)du)
Step 12
The integral of cos(u) with respect to u is sin(u).
14(t+C+12(sin(u)+C))
Step 13
Simplify.
14(t+12sin(u))+C
Step 14
Step 14.1
Replace all occurrences of t with arcsin(2x).
14(arcsin(2x)+12sin(u))+C
Step 14.2
Replace all occurrences of u with 2t.
14(arcsin(2x)+12sin(2t))+C
Step 14.3
Replace all occurrences of t with arcsin(2x).
14(arcsin(2x)+12sin(2arcsin(2x)))+C
14(arcsin(2x)+12sin(2arcsin(2x)))+C
Step 15
Step 15.1
Combine 12 and sin(2arcsin(2x)).
14(arcsin(2x)+sin(2arcsin(2x))2)+C
Step 15.2
Apply the distributive property.
14arcsin(2x)+14⋅sin(2arcsin(2x))2+C
Step 15.3
Combine 14 and arcsin(2x).
arcsin(2x)4+14⋅sin(2arcsin(2x))2+C
Step 15.4
Multiply 14⋅sin(2arcsin(2x))2.
Step 15.4.1
Multiply 14 by sin(2arcsin(2x))2.
arcsin(2x)4+sin(2arcsin(2x))4⋅2+C
Step 15.4.2
Multiply 4 by 2.
arcsin(2x)4+sin(2arcsin(2x))8+C
arcsin(2x)4+sin(2arcsin(2x))8+C
arcsin(2x)4+sin(2arcsin(2x))8+C
Step 16
Reorder terms.
14arcsin(2x)+18sin(2arcsin(2x))+C