Calculus Examples
∫√1-x2dx
Step 1
Let x=sin(t), where -π2≤t≤π2. Then dx=cos(t)dt. Note that since -π2≤t≤π2, cos(t) is positive.
∫√1-sin2(t)cos(t)dt
Step 2
Step 2.1
Simplify √1-sin2(t).
Step 2.1.1
Apply pythagorean identity.
∫√cos2(t)cos(t)dt
Step 2.1.2
Pull terms out from under the radical, assuming positive real numbers.
∫cos(t)cos(t)dt
∫cos(t)cos(t)dt
Step 2.2
Simplify.
Step 2.2.1
Raise cos(t) to the power of 1.
∫cos1(t)cos(t)dt
Step 2.2.2
Raise cos(t) to the power of 1.
∫cos1(t)cos1(t)dt
Step 2.2.3
Use the power rule aman=am+n to combine exponents.
∫cos(t)1+1dt
Step 2.2.4
Add 1 and 1.
∫cos2(t)dt
∫cos2(t)dt
∫cos2(t)dt
Step 3
Use the half-angle formula to rewrite cos2(t) as 1+cos(2t)2.
∫1+cos(2t)2dt
Step 4
Since 12 is constant with respect to t, move 12 out of the integral.
12∫1+cos(2t)dt
Step 5
Split the single integral into multiple integrals.
12(∫dt+∫cos(2t)dt)
Step 6
Apply the constant rule.
12(t+C+∫cos(2t)dt)
Step 7
Step 7.1
Let u=2t. Find dudt.
Step 7.1.1
Differentiate 2t.
ddt[2t]
Step 7.1.2
Since 2 is constant with respect to t, the derivative of 2t with respect to t is 2ddt[t].
2ddt[t]
Step 7.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
2⋅1
Step 7.1.4
Multiply 2 by 1.
2
2
Step 7.2
Rewrite the problem using u and du.
12(t+C+∫cos(u)12du)
12(t+C+∫cos(u)12du)
Step 8
Combine cos(u) and 12.
12(t+C+∫cos(u)2du)
Step 9
Since 12 is constant with respect to u, move 12 out of the integral.
12(t+C+12∫cos(u)du)
Step 10
The integral of cos(u) with respect to u is sin(u).
12(t+C+12(sin(u)+C))
Step 11
Simplify.
12(t+12sin(u))+C
Step 12
Step 12.1
Replace all occurrences of t with arcsin(x).
12(arcsin(x)+12sin(u))+C
Step 12.2
Replace all occurrences of u with 2t.
12(arcsin(x)+12sin(2t))+C
Step 12.3
Replace all occurrences of t with arcsin(x).
12(arcsin(x)+12sin(2arcsin(x)))+C
12(arcsin(x)+12sin(2arcsin(x)))+C
Step 13
Step 13.1
Combine 12 and sin(2arcsin(x)).
12(arcsin(x)+sin(2arcsin(x))2)+C
Step 13.2
Apply the distributive property.
12arcsin(x)+12⋅sin(2arcsin(x))2+C
Step 13.3
Combine 12 and arcsin(x).
arcsin(x)2+12⋅sin(2arcsin(x))2+C
Step 13.4
Multiply 12⋅sin(2arcsin(x))2.
Step 13.4.1
Multiply 12 by sin(2arcsin(x))2.
arcsin(x)2+sin(2arcsin(x))2⋅2+C
Step 13.4.2
Multiply 2 by 2.
arcsin(x)2+sin(2arcsin(x))4+C
arcsin(x)2+sin(2arcsin(x))4+C
arcsin(x)2+sin(2arcsin(x))4+C
Step 14
Reorder terms.
12arcsin(x)+14sin(2arcsin(x))+C