Calculus Examples

1-x2dx
Step 1
Let x=sin(t), where -π2tπ2. Then dx=cos(t)dt. Note that since -π2tπ2, cos(t) is positive.
1-sin2(t)cos(t)dt
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify 1-sin2(t).
Tap for more steps...
Step 2.1.1
Apply pythagorean identity.
cos2(t)cos(t)dt
Step 2.1.2
Pull terms out from under the radical, assuming positive real numbers.
cos(t)cos(t)dt
cos(t)cos(t)dt
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Raise cos(t) to the power of 1.
cos1(t)cos(t)dt
Step 2.2.2
Raise cos(t) to the power of 1.
cos1(t)cos1(t)dt
Step 2.2.3
Use the power rule aman=am+n to combine exponents.
cos(t)1+1dt
Step 2.2.4
Add 1 and 1.
cos2(t)dt
cos2(t)dt
cos2(t)dt
Step 3
Use the half-angle formula to rewrite cos2(t) as 1+cos(2t)2.
1+cos(2t)2dt
Step 4
Since 12 is constant with respect to t, move 12 out of the integral.
121+cos(2t)dt
Step 5
Split the single integral into multiple integrals.
12(dt+cos(2t)dt)
Step 6
Apply the constant rule.
12(t+C+cos(2t)dt)
Step 7
Let u=2t. Then du=2dt, so 12du=dt. Rewrite using u and du.
Tap for more steps...
Step 7.1
Let u=2t. Find dudt.
Tap for more steps...
Step 7.1.1
Differentiate 2t.
ddt[2t]
Step 7.1.2
Since 2 is constant with respect to t, the derivative of 2t with respect to t is 2ddt[t].
2ddt[t]
Step 7.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
21
Step 7.1.4
Multiply 2 by 1.
2
2
Step 7.2
Rewrite the problem using u and du.
12(t+C+cos(u)12du)
12(t+C+cos(u)12du)
Step 8
Combine cos(u) and 12.
12(t+C+cos(u)2du)
Step 9
Since 12 is constant with respect to u, move 12 out of the integral.
12(t+C+12cos(u)du)
Step 10
The integral of cos(u) with respect to u is sin(u).
12(t+C+12(sin(u)+C))
Step 11
Simplify.
12(t+12sin(u))+C
Step 12
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 12.1
Replace all occurrences of t with arcsin(x).
12(arcsin(x)+12sin(u))+C
Step 12.2
Replace all occurrences of u with 2t.
12(arcsin(x)+12sin(2t))+C
Step 12.3
Replace all occurrences of t with arcsin(x).
12(arcsin(x)+12sin(2arcsin(x)))+C
12(arcsin(x)+12sin(2arcsin(x)))+C
Step 13
Simplify.
Tap for more steps...
Step 13.1
Combine 12 and sin(2arcsin(x)).
12(arcsin(x)+sin(2arcsin(x))2)+C
Step 13.2
Apply the distributive property.
12arcsin(x)+12sin(2arcsin(x))2+C
Step 13.3
Combine 12 and arcsin(x).
arcsin(x)2+12sin(2arcsin(x))2+C
Step 13.4
Multiply 12sin(2arcsin(x))2.
Tap for more steps...
Step 13.4.1
Multiply 12 by sin(2arcsin(x))2.
arcsin(x)2+sin(2arcsin(x))22+C
Step 13.4.2
Multiply 2 by 2.
arcsin(x)2+sin(2arcsin(x))4+C
arcsin(x)2+sin(2arcsin(x))4+C
arcsin(x)2+sin(2arcsin(x))4+C
Step 14
Reorder terms.
12arcsin(x)+14sin(2arcsin(x))+C
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay