Calculus Examples

xsin(4x)dx
Step 1
Integrate by parts using the formula udv=uv-vdu, where u=x and dv=sin(4x).
x(-14cos(4x))--14cos(4x)dx
Step 2
Simplify.
Tap for more steps...
Step 2.1
Combine cos(4x) and 14.
x(-cos(4x)4)--14cos(4x)dx
Step 2.2
Combine x and cos(4x)4.
-xcos(4x)4--14cos(4x)dx
-xcos(4x)4--14cos(4x)dx
Step 3
Since -14 is constant with respect to x, move -14 out of the integral.
-xcos(4x)4-(-14cos(4x)dx)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Multiply -1 by -1.
-xcos(4x)4+1(14cos(4x)dx)
Step 4.2
Multiply 14 by 1.
-xcos(4x)4+14cos(4x)dx
-xcos(4x)4+14cos(4x)dx
Step 5
Let u=4x. Then du=4dx, so 14du=dx. Rewrite using u and du.
Tap for more steps...
Step 5.1
Let u=4x. Find dudx.
Tap for more steps...
Step 5.1.1
Differentiate 4x.
ddx[4x]
Step 5.1.2
Since 4 is constant with respect to x, the derivative of 4x with respect to x is 4ddx[x].
4ddx[x]
Step 5.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
41
Step 5.1.4
Multiply 4 by 1.
4
4
Step 5.2
Rewrite the problem using u and du.
-xcos(4x)4+14cos(u)14du
-xcos(4x)4+14cos(u)14du
Step 6
Combine cos(u) and 14.
-xcos(4x)4+14cos(u)4du
Step 7
Since 14 is constant with respect to u, move 14 out of the integral.
-xcos(4x)4+14(14cos(u)du)
Step 8
Simplify.
Tap for more steps...
Step 8.1
Multiply 14 by 14.
-xcos(4x)4+144cos(u)du
Step 8.2
Multiply 4 by 4.
-xcos(4x)4+116cos(u)du
-xcos(4x)4+116cos(u)du
Step 9
The integral of cos(u) with respect to u is sin(u).
-xcos(4x)4+116(sin(u)+C)
Step 10
Simplify.
Tap for more steps...
Step 10.1
Rewrite -xcos(4x)4+116(sin(u)+C) as -14xcos(4x)+116sin(u)+C.
-14xcos(4x)+116sin(u)+C
Step 10.2
Simplify.
Tap for more steps...
Step 10.2.1
Combine x and 14.
-x4cos(4x)+116sin(u)+C
Step 10.2.2
Combine cos(4x) and x4.
-cos(4x)x4+116sin(u)+C
-cos(4x)x4+116sin(u)+C
-cos(4x)x4+116sin(u)+C
Step 11
Replace all occurrences of u with 4x.
-cos(4x)x4+116sin(4x)+C
Step 12
Reorder factors in cos(4x)x4.
-14xcos(4x)+116sin(4x)+C
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay