Calculus Examples
∞∑n=1(2n+n35n3+1)n∞∑n=1(2n+n35n3+1)n
Step 1
For an infinite series ∑an∑an, find the limit L=limn→∞|an|1nL=limn→∞|an|1n to determine convergence using Cauchy's Root Test.
L=limn→∞|an|1nL=limn→∞|an|1n
Step 2
Substitute for anan.
L=limn→∞|(2n+n35n3+1)n|1nL=limn→∞∣∣∣(2n+n35n3+1)n∣∣∣1n
Step 3
Step 3.1
Move the exponent into the absolute value.
L=limn→∞|((2n+n35n3+1)n)1n|L=limn→∞∣∣
∣∣((2n+n35n3+1)n)1n∣∣
∣∣
Step 3.2
Multiply the exponents in ((2n+n35n3+1)n)1n((2n+n35n3+1)n)1n.
Step 3.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
L=limn→∞|(2n+n35n3+1)n1n|L=limn→∞∣∣
∣∣(2n+n35n3+1)n1n∣∣
∣∣
Step 3.2.2
Cancel the common factor of n.
Step 3.2.2.1
Cancel the common factor.
L=limn→∞|(2n+n35n3+1)n1n|
Step 3.2.2.2
Rewrite the expression.
L=limn→∞|(2n+n35n3+1)1|
L=limn→∞|(2n+n35n3+1)1|
L=limn→∞|(2n+n35n3+1)1|
Step 3.3
Simplify.
L=limn→∞|2n+n35n3+1|
L=limn→∞|2n+n35n3+1|
Step 4
Step 4.1
Move the limit inside the absolute value signs.
L=|limn→∞2n+n35n3+1|
Step 4.2
Divide the numerator and denominator by the highest power of n in the denominator, which is n3.
L=|limn→∞2nn3+n3n35n3n3+1n3|
Step 4.3
Evaluate the limit.
Step 4.3.1
Simplify each term.
Step 4.3.1.1
Cancel the common factor of n and n3.
Step 4.3.1.1.1
Factor n out of 2n.
L=|limn→∞n⋅2n3+n3n35n3n3+1n3|
Step 4.3.1.1.2
Cancel the common factors.
Step 4.3.1.1.2.1
Factor n out of n3.
L=|limn→∞n⋅2n⋅n2+n3n35n3n3+1n3|
Step 4.3.1.1.2.2
Cancel the common factor.
L=|limn→∞n⋅2n⋅n2+n3n35n3n3+1n3|
Step 4.3.1.1.2.3
Rewrite the expression.
L=|limn→∞2n2+n3n35n3n3+1n3|
L=|limn→∞2n2+n3n35n3n3+1n3|
L=|limn→∞2n2+n3n35n3n3+1n3|
Step 4.3.1.2
Cancel the common factor of n3.
Step 4.3.1.2.1
Cancel the common factor.
L=|limn→∞2n2+n3n35n3n3+1n3|
Step 4.3.1.2.2
Rewrite the expression.
L=|limn→∞2n2+15n3n3+1n3|
L=|limn→∞2n2+15n3n3+1n3|
L=|limn→∞2n2+15n3n3+1n3|
Step 4.3.2
Cancel the common factor of n3.
Step 4.3.2.1
Cancel the common factor.
L=|limn→∞2n2+15n3n3+1n3|
Step 4.3.2.2
Divide 5 by 1.
L=|limn→∞2n2+15+1n3|
L=|limn→∞2n2+15+1n3|
Step 4.3.3
Split the limit using the Limits Quotient Rule on the limit as n approaches ∞.
L=|limn→∞2n2+1limn→∞5+1n3|
Step 4.3.4
Split the limit using the Sum of Limits Rule on the limit as n approaches ∞.
L=|limn→∞2n2+limn→∞1limn→∞5+1n3|
Step 4.3.5
Move the term 2 outside of the limit because it is constant with respect to n.
L=|2limn→∞1n2+limn→∞1limn→∞5+1n3|
L=|2limn→∞1n2+limn→∞1limn→∞5+1n3|
Step 4.4
Since its numerator approaches a real number while its denominator is unbounded, the fraction 1n2 approaches 0.
L=|2⋅0+limn→∞1limn→∞5+1n3|
Step 4.5
Evaluate the limit.
Step 4.5.1
Evaluate the limit of 1 which is constant as n approaches ∞.
L=|2⋅0+1limn→∞5+1n3|
Step 4.5.2
Split the limit using the Sum of Limits Rule on the limit as n approaches ∞.
L=|2⋅0+1limn→∞5+limn→∞1n3|
Step 4.5.3
Evaluate the limit of 5 which is constant as n approaches ∞.
L=|2⋅0+15+limn→∞1n3|
L=|2⋅0+15+limn→∞1n3|
Step 4.6
Since its numerator approaches a real number while its denominator is unbounded, the fraction 1n3 approaches 0.
L=|2⋅0+15+0|
Step 4.7
Simplify the answer.
Step 4.7.1
Simplify the numerator.
Step 4.7.1.1
Multiply 2 by 0.
L=|0+15+0|
Step 4.7.1.2
Add 0 and 1.
L=|15+0|
L=|15+0|
Step 4.7.2
Add 5 and 0.
L=|15|
Step 4.7.3
15 is approximately 0.2 which is positive so remove the absolute value
L=15
L=15
Step 4.8
Divide 1 by 5.
L=0.2
L=0.2
Step 5
If L<1, the series is absolutely convergent. If L>1, the series is divergent. If L=1, the test is inconclusive. In this case, L<1.
The series is convergent on [1,∞)