Calculus Examples
√8x5√8x5
Step 1
Rewrite √8x5√8x5 as √8x√5√8x√5.
√8x√5√8x√5
Step 2
Step 2.1
Rewrite 8x8x as 22⋅(2x)22⋅(2x).
Step 2.1.1
Factor 44 out of 88.
√4(2)x√5√4(2)x√5
Step 2.1.2
Rewrite 44 as 2222.
√22⋅2x√5√22⋅2x√5
Step 2.1.3
Add parentheses.
√22⋅(2x)√5√22⋅(2x)√5
√22⋅(2x)√5√22⋅(2x)√5
Step 2.2
Pull terms out from under the radical.
2√2x√52√2x√5
2√2x√52√2x√5
Step 3
Multiply 2√2x√52√2x√5 by √5√5√5√5.
2√2x√5⋅√5√52√2x√5⋅√5√5
Step 4
Step 4.1
Multiply 2√2x√52√2x√5 by √5√5√5√5.
2√2x√5√5√52√2x√5√5√5
Step 4.2
Raise √5√5 to the power of 11.
2√2x√5√51√52√2x√5√51√5
Step 4.3
Raise √5√5 to the power of 11.
2√2x√5√51√512√2x√5√51√51
Step 4.4
Use the power rule aman=am+naman=am+n to combine exponents.
2√2x√5√51+12√2x√5√51+1
Step 4.5
Add 11 and 11.
2√2x√5√522√2x√5√52
Step 4.6
Rewrite √52√52 as 55.
Step 4.6.1
Use n√ax=axnn√ax=axn to rewrite √5√5 as 512512.
2√2x√5(512)22√2x√5(512)2
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
2√2x√5512⋅22√2x√5512⋅2
Step 4.6.3
Combine 1212 and 22.
2√2x√55222√2x√5522
Step 4.6.4
Cancel the common factor of 22.
Step 4.6.4.1
Cancel the common factor.
2√2x√5522
Step 4.6.4.2
Rewrite the expression.
2√2x√551
2√2x√551
Step 4.6.5
Evaluate the exponent.
2√2x√55
2√2x√55
2√2x√55
Step 5
Step 5.1
Combine using the product rule for radicals.
2√5(2x)5
Step 5.2
Multiply 5 by 2.
2√10x5
2√10x5