Calculus Examples

(4,11)
Step 1
Convert from rectangular coordinates (x,y) to polar coordinates (r,θ) using the conversion formulas.
r=x2+y2
θ=tan-1(yx)
Step 2
Replace x and y with the actual values.
r=(4)2+(11)2
θ=tan-1(yx)
Step 3
Find the magnitude of the polar coordinate.
Tap for more steps...
Step 3.1
Raise 4 to the power of 2.
r=16+(11)2
θ=tan-1(yx)
Step 3.2
Raise 11 to the power of 2.
r=16+121
θ=tan-1(yx)
Step 3.3
Add 16 and 121.
r=137
θ=tan-1(yx)
r=137
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=137
θ=tan-1(114)
Step 5
The inverse tangent of 114 is θ=70.01689347°.
r=137
θ=70.01689347°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(137,70.01689347°)
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay