Calculus Examples
f(x)=4x-3f(x)=4x−3
Step 1
Write f(x)=4x-3f(x)=4x−3 as an equation.
y=4x-3y=4x−3
Step 2
Interchange the variables.
x=4y-3x=4y−3
Step 3
Step 3.1
Rewrite the equation as 4y-3=x4y−3=x.
4y-3=x4y−3=x
Step 3.2
Add 33 to both sides of the equation.
4y=x+34y=x+3
Step 3.3
Divide each term in 4y=x+34y=x+3 by 44 and simplify.
Step 3.3.1
Divide each term in 4y=x+34y=x+3 by 44.
4y4=x4+344y4=x4+34
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 44.
Step 3.3.2.1.1
Cancel the common factor.
4y4=x4+344y4=x4+34
Step 3.3.2.1.2
Divide yy by 11.
y=x4+34y=x4+34
y=x4+34y=x4+34
y=x4+34y=x4+34
y=x4+34y=x4+34
y=x4+34y=x4+34
Step 4
Replace yy with f-1(x)f−1(x) to show the final answer.
f-1(x)=x4+34f−1(x)=x4+34
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=xf−1(f(x))=x and f(f-1(x))=xf(f−1(x))=x.
Step 5.2
Evaluate f-1(f(x))f−1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))f−1(f(x))
Step 5.2.2
Evaluate f-1(4x-3)f−1(4x−3) by substituting in the value of ff into f-1f−1.
f-1(4x-3)=4x-34+34f−1(4x−3)=4x−34+34
Step 5.2.3
Combine the numerators over the common denominator.
f-1(4x-3)=4x-3+34f−1(4x−3)=4x−3+34
Step 5.2.4
Combine the opposite terms in 4x-3+34x−3+3.
Step 5.2.4.1
Add -3−3 and 33.
f-1(4x-3)=4x+04f−1(4x−3)=4x+04
Step 5.2.4.2
Add 4x4x and 00.
f-1(4x-3)=4x4f−1(4x−3)=4x4
f-1(4x-3)=4x4f−1(4x−3)=4x4
Step 5.2.5
Cancel the common factor of 44.
Step 5.2.5.1
Cancel the common factor.
f-1(4x-3)=4x4f−1(4x−3)=4x4
Step 5.2.5.2
Divide xx by 11.
f-1(4x-3)=xf−1(4x−3)=x
f-1(4x-3)=xf−1(4x−3)=x
f-1(4x-3)=xf−1(4x−3)=x
Step 5.3
Evaluate f(f-1(x))f(f−1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))f(f−1(x))
Step 5.3.2
Evaluate f(x4+34)f(x4+34) by substituting in the value of f-1f−1 into ff.
f(x4+34)=4(x4+34)-3f(x4+34)=4(x4+34)−3
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the distributive property.
f(x4+34)=4(x4)+4(34)-3f(x4+34)=4(x4)+4(34)−3
Step 5.3.3.2
Cancel the common factor of 44.
Step 5.3.3.2.1
Cancel the common factor.
f(x4+34)=4(x4)+4(34)-3f(x4+34)=4(x4)+4(34)−3
Step 5.3.3.2.2
Rewrite the expression.
f(x4+34)=x+4(34)-3f(x4+34)=x+4(34)−3
f(x4+34)=x+4(34)-3f(x4+34)=x+4(34)−3
Step 5.3.3.3
Cancel the common factor of 44.
Step 5.3.3.3.1
Cancel the common factor.
f(x4+34)=x+4(34)-3f(x4+34)=x+4(34)−3
Step 5.3.3.3.2
Rewrite the expression.
f(x4+34)=x+3-3f(x4+34)=x+3−3
f(x4+34)=x+3-3f(x4+34)=x+3−3
f(x4+34)=x+3-3f(x4+34)=x+3−3
Step 5.3.4
Combine the opposite terms in x+3-3x+3−3.
Step 5.3.4.1
Subtract 33 from 33.
f(x4+34)=x+0f(x4+34)=x+0
Step 5.3.4.2
Add xx and 00.
f(x4+34)=xf(x4+34)=x
f(x4+34)=xf(x4+34)=x
f(x4+34)=xf(x4+34)=x
Step 5.4
Since f-1(f(x))=xf−1(f(x))=x and f(f-1(x))=xf(f−1(x))=x, then f-1(x)=x4+34f−1(x)=x4+34 is the inverse of f(x)=4x-3f(x)=4x−3.
f-1(x)=x4+34f−1(x)=x4+34
f-1(x)=x4+34f−1(x)=x4+34