Calculus Examples
∫316x-2dx
Step 1
Split the single integral into multiple integrals.
∫316xdx+∫31-2dx
Step 2
Since 6 is constant with respect to x, move 6 out of the integral.
6∫31xdx+∫31-2dx
Step 3
By the Power Rule, the integral of x with respect to x is 12x2.
6(12x2]31)+∫31-2dx
Step 4
Combine 12 and x2.
6(x22]31)+∫31-2dx
Step 5
Apply the constant rule.
6(x22]31)+-2x]31
Step 6
Step 6.1
Evaluate x22 at 3 and at 1.
6((322)-122)+-2x]31
Step 6.2
Evaluate -2x at 3 and at 1.
6(322-122)+-2⋅3+2⋅1
Step 6.3
Simplify.
Step 6.3.1
Raise 3 to the power of 2.
6(92-122)-2⋅3+2⋅1
Step 6.3.2
One to any power is one.
6(92-12)-2⋅3+2⋅1
Step 6.3.3
Combine the numerators over the common denominator.
69-12-2⋅3+2⋅1
Step 6.3.4
Subtract 1 from 9.
6(82)-2⋅3+2⋅1
Step 6.3.5
Cancel the common factor of 8 and 2.
Step 6.3.5.1
Factor 2 out of 8.
62⋅42-2⋅3+2⋅1
Step 6.3.5.2
Cancel the common factors.
Step 6.3.5.2.1
Factor 2 out of 2.
62⋅42(1)-2⋅3+2⋅1
Step 6.3.5.2.2
Cancel the common factor.
62⋅42⋅1-2⋅3+2⋅1
Step 6.3.5.2.3
Rewrite the expression.
6(41)-2⋅3+2⋅1
Step 6.3.5.2.4
Divide 4 by 1.
6⋅4-2⋅3+2⋅1
6⋅4-2⋅3+2⋅1
6⋅4-2⋅3+2⋅1
Step 6.3.6
Multiply 6 by 4.
24-2⋅3+2⋅1
Step 6.3.7
Multiply -2 by 3.
24-6+2⋅1
Step 6.3.8
Multiply 2 by 1.
24-6+2
Step 6.3.9
Add -6 and 2.
24-4
Step 6.3.10
Subtract 4 from 24.
20
20
20
Step 7