Calculus Examples

Evaluate the Integral
316x-2dx
Step 1
Split the single integral into multiple integrals.
316xdx+31-2dx
Step 2
Since 6 is constant with respect to x, move 6 out of the integral.
631xdx+31-2dx
Step 3
By the Power Rule, the integral of x with respect to x is 12x2.
6(12x2]31)+31-2dx
Step 4
Combine 12 and x2.
6(x22]31)+31-2dx
Step 5
Apply the constant rule.
6(x22]31)+-2x]31
Step 6
Substitute and simplify.
Tap for more steps...
Step 6.1
Evaluate x22 at 3 and at 1.
6((322)-122)+-2x]31
Step 6.2
Evaluate -2x at 3 and at 1.
6(322-122)+-23+21
Step 6.3
Simplify.
Tap for more steps...
Step 6.3.1
Raise 3 to the power of 2.
6(92-122)-23+21
Step 6.3.2
One to any power is one.
6(92-12)-23+21
Step 6.3.3
Combine the numerators over the common denominator.
69-12-23+21
Step 6.3.4
Subtract 1 from 9.
6(82)-23+21
Step 6.3.5
Cancel the common factor of 8 and 2.
Tap for more steps...
Step 6.3.5.1
Factor 2 out of 8.
6242-23+21
Step 6.3.5.2
Cancel the common factors.
Tap for more steps...
Step 6.3.5.2.1
Factor 2 out of 2.
6242(1)-23+21
Step 6.3.5.2.2
Cancel the common factor.
62421-23+21
Step 6.3.5.2.3
Rewrite the expression.
6(41)-23+21
Step 6.3.5.2.4
Divide 4 by 1.
64-23+21
64-23+21
64-23+21
Step 6.3.6
Multiply 6 by 4.
24-23+21
Step 6.3.7
Multiply -2 by 3.
24-6+21
Step 6.3.8
Multiply 2 by 1.
24-6+2
Step 6.3.9
Add -6 and 2.
24-4
Step 6.3.10
Subtract 4 from 24.
20
20
20
Step 7
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay