Calculus Examples

Find the Difference Quotient
f(x)=x2+3x
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)h
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at x=x+h.
Tap for more steps...
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=(x+h)2+3(x+h)
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Rewrite (x+h)2 as (x+h)(x+h).
f(x+h)=(x+h)(x+h)+3(x+h)
Step 2.1.2.1.2
Expand (x+h)(x+h) using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=x(x+h)+h(x+h)+3(x+h)
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=xx+xh+h(x+h)+3(x+h)
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=xx+xh+hx+hh+3(x+h)
f(x+h)=xx+xh+hx+hh+3(x+h)
Step 2.1.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.3.1.1
Multiply x by x.
f(x+h)=x2+xh+hx+hh+3(x+h)
Step 2.1.2.1.3.1.2
Multiply h by h.
f(x+h)=x2+xh+hx+h2+3(x+h)
f(x+h)=x2+xh+hx+h2+3(x+h)
Step 2.1.2.1.3.2
Add xh and hx.
Tap for more steps...
Step 2.1.2.1.3.2.1
Reorder x and h.
f(x+h)=x2+hx+hx+h2+3(x+h)
Step 2.1.2.1.3.2.2
Add hx and hx.
f(x+h)=x2+2hx+h2+3(x+h)
f(x+h)=x2+2hx+h2+3(x+h)
f(x+h)=x2+2hx+h2+3(x+h)
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=x2+2hx+h2+3x+3h
f(x+h)=x2+2hx+h2+3x+3h
Step 2.1.2.2
The final answer is x2+2hx+h2+3x+3h.
x2+2hx+h2+3x+3h
x2+2hx+h2+3x+3h
x2+2hx+h2+3x+3h
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move 3x.
x2+2hx+h2+3h+3x
Step 2.2.2
Move x2.
2hx+h2+x2+3h+3x
Step 2.2.3
Reorder 2hx and h2.
h2+2hx+x2+3h+3x
h2+2hx+x2+3h+3x
Step 2.3
Find the components of the definition.
f(x+h)=h2+2hx+x2+3h+3x
f(x)=x2+3x
f(x+h)=h2+2hx+x2+3h+3x
f(x)=x2+3x
Step 3
Plug in the components.
f(x+h)-f(x)h=h2+2hx+x2+3h+3x-(x2+3x)h
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
h2+2hx+x2+3h+3x-x2-(3x)h
Step 4.1.2
Multiply 3 by -1.
h2+2hx+x2+3h+3x-x2-3xh
Step 4.1.3
Subtract x2 from x2.
h2+2hx+3h+3x+0-3xh
Step 4.1.4
Add h2 and 0.
h2+2hx+3h+3x-3xh
Step 4.1.5
Subtract 3x from 3x.
h2+2hx+3h+0h
Step 4.1.6
Add h2+2hx+3h and 0.
h2+2hx+3hh
Step 4.1.7
Factor h out of h2+2hx+3h.
Tap for more steps...
Step 4.1.7.1
Factor h out of h2.
hh+2hx+3hh
Step 4.1.7.2
Factor h out of 2hx.
h(h)+h(2x)+3hh
Step 4.1.7.3
Factor h out of 3h.
h(h)+h(2x)+h3h
Step 4.1.7.4
Factor h out of h(h)+h(2x).
h(h+2x)+h3h
Step 4.1.7.5
Factor h out of h(h+2x)+h3.
h(h+2x+3)h
h(h+2x+3)h
h(h+2x+3)h
Step 4.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.1
Cancel the common factor of h.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
h(h+2x+3)h
Step 4.2.1.2
Divide h+2x+3 by 1.
h+2x+3
h+2x+3
Step 4.2.2
Reorder h and 2x.
2x+h+3
2x+h+3
2x+h+3
Step 5
Enter YOUR Problem
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]