Calculus Examples
f(x)=12x2-3f(x)=12x2−3
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)hf(x+h)−f(x)h
Step 2
Step 2.1
Evaluate the function at x=x+hx=x+h.
Step 2.1.1
Replace the variable xx with x+hx+h in the expression.
f(x+h)=12(x+h)2-3f(x+h)=12(x+h)2−3
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Rewrite (x+h)2(x+h)2 as (x+h)(x+h)(x+h)(x+h).
f(x+h)=12((x+h)(x+h))-3f(x+h)=12((x+h)(x+h))−3
Step 2.1.2.1.2
Expand (x+h)(x+h)(x+h)(x+h) using the FOIL Method.
Step 2.1.2.1.2.1
Apply the distributive property.
f(x+h)=12(x(x+h)+h(x+h))-3f(x+h)=12(x(x+h)+h(x+h))−3
Step 2.1.2.1.2.2
Apply the distributive property.
f(x+h)=12(x⋅x+xh+h(x+h))-3f(x+h)=12(x⋅x+xh+h(x+h))−3
Step 2.1.2.1.2.3
Apply the distributive property.
f(x+h)=12(x⋅x+xh+hx+h⋅h)-3f(x+h)=12(x⋅x+xh+hx+h⋅h)−3
f(x+h)=12(x⋅x+xh+hx+h⋅h)-3f(x+h)=12(x⋅x+xh+hx+h⋅h)−3
Step 2.1.2.1.3
Simplify and combine like terms.
Step 2.1.2.1.3.1
Simplify each term.
Step 2.1.2.1.3.1.1
Multiply xx by xx.
f(x+h)=12(x2+xh+hx+h⋅h)-3f(x+h)=12(x2+xh+hx+h⋅h)−3
Step 2.1.2.1.3.1.2
Multiply hh by hh.
f(x+h)=12(x2+xh+hx+h2)-3f(x+h)=12(x2+xh+hx+h2)−3
f(x+h)=12(x2+xh+hx+h2)-3f(x+h)=12(x2+xh+hx+h2)−3
Step 2.1.2.1.3.2
Add xhxh and hxhx.
Step 2.1.2.1.3.2.1
Reorder xx and hh.
f(x+h)=12(x2+hx+hx+h2)-3f(x+h)=12(x2+hx+hx+h2)−3
Step 2.1.2.1.3.2.2
Add hxhx and hxhx.
f(x+h)=12(x2+2hx+h2)-3f(x+h)=12(x2+2hx+h2)−3
f(x+h)=12(x2+2hx+h2)-3f(x+h)=12(x2+2hx+h2)−3
f(x+h)=12(x2+2hx+h2)-3f(x+h)=12(x2+2hx+h2)−3
Step 2.1.2.1.4
Apply the distributive property.
f(x+h)=12x2+12(2hx)+12h2-3f(x+h)=12x2+12(2hx)+12h2−3
Step 2.1.2.1.5
Multiply 22 by 1212.
f(x+h)=12x2+24hx+12h2-3f(x+h)=12x2+24hx+12h2−3
f(x+h)=12x2+24hx+12h2-3f(x+h)=12x2+24hx+12h2−3
Step 2.1.2.2
The final answer is 12x2+24hx+12h2-312x2+24hx+12h2−3.
12x2+24hx+12h2-312x2+24hx+12h2−3
12x2+24hx+12h2-312x2+24hx+12h2−3
12x2+24hx+12h2-312x2+24hx+12h2−3
Step 2.2
Reorder.
Step 2.2.1
Move 12x212x2.
24hx+12h2+12x2-324hx+12h2+12x2−3
Step 2.2.2
Reorder 24hx24hx and 12h212h2.
12h2+24hx+12x2-312h2+24hx+12x2−3
12h2+24hx+12x2-312h2+24hx+12x2−3
Step 2.3
Find the components of the definition.
f(x+h)=12h2+24hx+12x2-3f(x+h)=12h2+24hx+12x2−3
f(x)=12x2-3f(x)=12x2−3
f(x+h)=12h2+24hx+12x2-3f(x+h)=12h2+24hx+12x2−3
f(x)=12x2-3f(x)=12x2−3
Step 3
Plug in the components.
f(x+h)-f(x)h=12h2+24hx+12x2-3-(12x2-3)hf(x+h)−f(x)h=12h2+24hx+12x2−3−(12x2−3)h
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Apply the distributive property.
12h2+24hx+12x2-3-(12x2)--3h12h2+24hx+12x2−3−(12x2)−−3h
Step 4.1.2
Multiply 1212 by -1−1.
12h2+24hx+12x2-3-12x2--3h12h2+24hx+12x2−3−12x2−−3h
Step 4.1.3
Multiply -1−1 by -3−3.
12h2+24hx+12x2-3-12x2+3h12h2+24hx+12x2−3−12x2+3h
Step 4.1.4
Subtract 12x212x2 from 12x212x2.
12h2+24hx+0-3+3h12h2+24hx+0−3+3h
Step 4.1.5
Add 12h212h2 and 00.
12h2+24hx-3+3h12h2+24hx−3+3h
Step 4.1.6
Add -3−3 and 33.
12h2+24hx+0h12h2+24hx+0h
Step 4.1.7
Add 12h2+24hx12h2+24hx and 00.
12h2+24hxh12h2+24hxh
Step 4.1.8
Factor 12h12h out of 12h2+24hx12h2+24hx.
Step 4.1.8.1
Factor 12h12h out of 12h212h2.
12h⋅h+24hxh12h⋅h+24hxh
Step 4.1.8.2
Factor 12h12h out of 24hx24hx.
12h⋅h+12h(2x)h12h⋅h+12h(2x)h
Step 4.1.8.3
Factor 12h12h out of 12h⋅h+12h(2x)12h⋅h+12h(2x).
12h(h+2x)h12h(h+2x)h
12h(h+2x)h12h(h+2x)h
12h(h+2x)h12h(h+2x)h
Step 4.2
Simplify terms.
Step 4.2.1
Cancel the common factor of hh.
Step 4.2.1.1
Cancel the common factor.
12h(h+2x)h
Step 4.2.1.2
Divide 12(h+2x) by 1.
12(h+2x)
12(h+2x)
Step 4.2.2
Apply the distributive property.
12h+12(2x)
Step 4.2.3
Simplify the expression.
Step 4.2.3.1
Multiply 2 by 12.
12h+24x
Step 4.2.3.2
Reorder 12h and 24x.
24x+12h
24x+12h
24x+12h
24x+12h
Step 5