Calculus Examples
y′=3yx , y=x3
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx(y)=ddx(x3)
Step 1.2
The derivative of y with respect to x is y′.
y′
Step 1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2
Step 1.4
Reform the equation by setting the left side equal to the right side.
y′=3x2
y′=3x2
Step 2
Substitute into the given differential equation.
3x2=3x3x
Step 3
Step 3.1
Factor x out of 3x3.
3x2=x(3x2)x
Step 3.2
Cancel the common factors.
Step 3.2.1
Raise x to the power of 1.
3x2=x(3x2)x1
Step 3.2.2
Factor x out of x1.
3x2=x(3x2)x⋅1
Step 3.2.3
Cancel the common factor.
3x2=x(3x2)x⋅1
Step 3.2.4
Rewrite the expression.
3x2=3x21
Step 3.2.5
Divide 3x2 by 1.
3x2=3x2
3x2=3x2
3x2=3x2
Step 4
The given solution satisfies the given differential equation.
y=x3 is a solution to y′=3yx