Calculus Examples

Solve the Differential Equation
dydx-1xy=2xdydx1xy=2x
Step 1
The integrating factor is defined by the formula eP(x)dx, where P(x)=-1x.
Tap for more steps...
Step 1.1
Set up the integration.
e-1xdx
Step 1.2
Integrate -1x.
Tap for more steps...
Step 1.2.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-1xdx
Step 1.2.2
The integral of 1x with respect to x is ln(|x|).
e-(ln(|x|)+C)
Step 1.2.3
Simplify.
e-ln(|x|)+C
e-ln(|x|)+C
Step 1.3
Remove the constant of integration.
e-ln(x)
Step 1.4
Use the logarithmic power rule.
eln(x-1)
Step 1.5
Exponentiation and log are inverse functions.
x-1
Step 1.6
Rewrite the expression using the negative exponent rule b-n=1bn.
1x
1x
Step 2
Multiply each term by the integrating factor 1x.
Tap for more steps...
Step 2.1
Multiply each term by 1x.
1xdydx+1x(-1xy)=1x(2x)
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Combine 1x and dydx.
dydxx+1x(-1xy)=1x(2x)
Step 2.2.2
Rewrite using the commutative property of multiplication.
dydxx-1x(1xy)=1x(2x)
Step 2.2.3
Combine 1x and y.
dydxx-1xyx=1x(2x)
Step 2.2.4
Multiply -1xyx.
Tap for more steps...
Step 2.2.4.1
Multiply yx by 1x.
dydxx-yxx=1x(2x)
Step 2.2.4.2
Raise x to the power of 1.
dydxx-yx1x=1x(2x)
Step 2.2.4.3
Raise x to the power of 1.
dydxx-yx1x1=1x(2x)
Step 2.2.4.4
Use the power rule aman=am+n to combine exponents.
dydxx-yx1+1=1x(2x)
Step 2.2.4.5
Add 1 and 1.
dydxx-yx2=1x(2x)
dydxx-yx2=1x(2x)
dydxx-yx2=1x(2x)
Step 2.3
Rewrite using the commutative property of multiplication.
dydxx-yx2=21xx
Step 2.4
Combine 2 and 1x.
dydxx-yx2=2xx
Step 2.5
Cancel the common factor of x.
Tap for more steps...
Step 2.5.1
Cancel the common factor.
dydxx-yx2=2xx
Step 2.5.2
Rewrite the expression.
dydxx-yx2=2
dydxx-yx2=2
dydxx-yx2=2
Step 3
Rewrite the left side as a result of differentiating a product.
ddx[1xy]=2
Step 4
Set up an integral on each side.
ddx[1xy]dx=2dx
Step 5
Integrate the left side.
1xy=2dx
Step 6
Apply the constant rule.
1xy=2x+C
Step 7
Solve for y.
Tap for more steps...
Step 7.1
Combine 1x and y.
yx=2x+C
Step 7.2
Multiply both sides by x.
yxx=(2x+C)x
Step 7.3
Simplify.
Tap for more steps...
Step 7.3.1
Simplify the left side.
Tap for more steps...
Step 7.3.1.1
Cancel the common factor of x.
Tap for more steps...
Step 7.3.1.1.1
Cancel the common factor.
yxx=(2x+C)x
Step 7.3.1.1.2
Rewrite the expression.
y=(2x+C)x
y=(2x+C)x
y=(2x+C)x
Step 7.3.2
Simplify the right side.
Tap for more steps...
Step 7.3.2.1
Simplify (2x+C)x.
Tap for more steps...
Step 7.3.2.1.1
Apply the distributive property.
y=2xx+Cx
Step 7.3.2.1.2
Multiply x by x by adding the exponents.
Tap for more steps...
Step 7.3.2.1.2.1
Move x.
y=2(xx)+Cx
Step 7.3.2.1.2.2
Multiply x by x.
y=2x2+Cx
y=2x2+Cx
Step 7.3.2.1.3
Reorder 2x2 and Cx.
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay