Calculus Examples
dydx-1xy=2xdydx−1xy=2x
Step 1
Step 1.1
Set up the integration.
e∫-1xdx
Step 1.2
Integrate -1x.
Step 1.2.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-∫1xdx
Step 1.2.2
The integral of 1x with respect to x is ln(|x|).
e-(ln(|x|)+C)
Step 1.2.3
Simplify.
e-ln(|x|)+C
e-ln(|x|)+C
Step 1.3
Remove the constant of integration.
e-ln(x)
Step 1.4
Use the logarithmic power rule.
eln(x-1)
Step 1.5
Exponentiation and log are inverse functions.
x-1
Step 1.6
Rewrite the expression using the negative exponent rule b-n=1bn.
1x
1x
Step 2
Step 2.1
Multiply each term by 1x.
1xdydx+1x(-1xy)=1x(2x)
Step 2.2
Simplify each term.
Step 2.2.1
Combine 1x and dydx.
dydxx+1x(-1xy)=1x(2x)
Step 2.2.2
Rewrite using the commutative property of multiplication.
dydxx-1x(1xy)=1x(2x)
Step 2.2.3
Combine 1x and y.
dydxx-1x⋅yx=1x(2x)
Step 2.2.4
Multiply -1x⋅yx.
Step 2.2.4.1
Multiply yx by 1x.
dydxx-yx⋅x=1x(2x)
Step 2.2.4.2
Raise x to the power of 1.
dydxx-yx1x=1x(2x)
Step 2.2.4.3
Raise x to the power of 1.
dydxx-yx1x1=1x(2x)
Step 2.2.4.4
Use the power rule aman=am+n to combine exponents.
dydxx-yx1+1=1x(2x)
Step 2.2.4.5
Add 1 and 1.
dydxx-yx2=1x(2x)
dydxx-yx2=1x(2x)
dydxx-yx2=1x(2x)
Step 2.3
Rewrite using the commutative property of multiplication.
dydxx-yx2=21xx
Step 2.4
Combine 2 and 1x.
dydxx-yx2=2xx
Step 2.5
Cancel the common factor of x.
Step 2.5.1
Cancel the common factor.
dydxx-yx2=2xx
Step 2.5.2
Rewrite the expression.
dydxx-yx2=2
dydxx-yx2=2
dydxx-yx2=2
Step 3
Rewrite the left side as a result of differentiating a product.
ddx[1xy]=2
Step 4
Set up an integral on each side.
∫ddx[1xy]dx=∫2dx
Step 5
Integrate the left side.
1xy=∫2dx
Step 6
Apply the constant rule.
1xy=2x+C
Step 7
Step 7.1
Combine 1x and y.
yx=2x+C
Step 7.2
Multiply both sides by x.
yxx=(2x+C)x
Step 7.3
Simplify.
Step 7.3.1
Simplify the left side.
Step 7.3.1.1
Cancel the common factor of x.
Step 7.3.1.1.1
Cancel the common factor.
yxx=(2x+C)x
Step 7.3.1.1.2
Rewrite the expression.
y=(2x+C)x
y=(2x+C)x
y=(2x+C)x
Step 7.3.2
Simplify the right side.
Step 7.3.2.1
Simplify (2x+C)x.
Step 7.3.2.1.1
Apply the distributive property.
y=2x⋅x+Cx
Step 7.3.2.1.2
Multiply x by x by adding the exponents.
Step 7.3.2.1.2.1
Move x.
y=2(x⋅x)+Cx
Step 7.3.2.1.2.2
Multiply x by x.
y=2x2+Cx
y=2x2+Cx
Step 7.3.2.1.3
Reorder 2x2 and Cx.
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2
y=Cx+2x2