Calculus Examples

Solve the Differential Equation
dydx+y=sin(x)dydx+y=sin(x)
Step 1
The integrating factor is defined by the formula eP(x)dx, where P(x)=1.
Tap for more steps...
Step 1.1
Set up the integration.
edx
Step 1.2
Apply the constant rule.
ex+C
Step 1.3
Remove the constant of integration.
ex
ex
Step 2
Multiply each term by the integrating factor ex.
Tap for more steps...
Step 2.1
Multiply each term by ex.
exdydx+exy=exsin(x)
Step 2.2
Reorder factors in exdydx+exy=exsin(x).
exdydx+yex=exsin(x)
exdydx+yex=exsin(x)
Step 3
Rewrite the left side as a result of differentiating a product.
ddx[exy]=exsin(x)
Step 4
Set up an integral on each side.
ddx[exy]dx=exsin(x)dx
Step 5
Integrate the left side.
exy=exsin(x)dx
Step 6
Integrate the right side.
Tap for more steps...
Step 6.1
Reorder ex and sin(x).
exy=sin(x)exdx
Step 6.2
Integrate by parts using the formula udv=uv-vdu, where u=sin(x) and dv=ex.
exy=sin(x)ex-excos(x)dx
Step 6.3
Reorder ex and cos(x).
exy=sin(x)ex-cos(x)exdx
Step 6.4
Integrate by parts using the formula udv=uv-vdu, where u=cos(x) and dv=ex.
exy=sin(x)ex-(cos(x)ex-ex(-sin(x))dx)
Step 6.5
Since -1 is constant with respect to x, move -1 out of the integral.
exy=sin(x)ex-(cos(x)ex--ex(sin(x))dx)
Step 6.6
Simplify by multiplying through.
Tap for more steps...
Step 6.6.1
Multiply -1 by -1.
exy=sin(x)ex-(cos(x)ex+1ex(sin(x))dx)
Step 6.6.2
Multiply ex(sin(x))dx by 1.
exy=sin(x)ex-(cos(x)ex+ex(sin(x))dx)
Step 6.6.3
Apply the distributive property.
exy=sin(x)ex-(cos(x)ex)-ex(sin(x))dx
exy=sin(x)ex-(cos(x)ex)-ex(sin(x))dx
Step 6.7
Solving for exsin(x)dx, we find that exsin(x)dx = sin(x)ex-(cos(x)ex)2.
exy=sin(x)ex-(cos(x)ex)2+C
Step 6.8
Rewrite sin(x)ex-cos(x)ex2+C as 12(sin(x)ex-cos(x)ex)+C.
exy=12(sin(x)ex-cos(x)ex)+C
exy=12(sin(x)ex-cos(x)ex)+C
Step 7
Solve for y.
Tap for more steps...
Step 7.1
Simplify.
Tap for more steps...
Step 7.1.1
Apply the distributive property.
exy=12(sin(x)ex)+12(-cos(x)ex)+C
Step 7.1.2
Multiply 12(sin(x)ex).
Tap for more steps...
Step 7.1.2.1
Combine sin(x) and 12.
exy=sin(x)2ex+12(-cos(x)ex)+C
Step 7.1.2.2
Combine sin(x)2 and ex.
exy=sin(x)ex2+12(-cos(x)ex)+C
exy=sin(x)ex2+12(-cos(x)ex)+C
Step 7.1.3
Multiply 12(-cos(x)ex).
Tap for more steps...
Step 7.1.3.1
Combine 12 and cos(x).
exy=sin(x)ex2-cos(x)2ex+C
Step 7.1.3.2
Combine ex and cos(x)2.
exy=sin(x)ex2-excos(x)2+C
exy=sin(x)ex2-excos(x)2+C
Step 7.1.4
Reorder factors in sin(x)ex2-excos(x)2.
exy=exsin(x)2-excos(x)2+C
exy=exsin(x)2-excos(x)2+C
Step 7.2
Divide each term in exy=exsin(x)2-excos(x)2+C by ex and simplify.
Tap for more steps...
Step 7.2.1
Divide each term in exy=exsin(x)2-excos(x)2+C by ex.
exyex=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.2
Simplify the left side.
Tap for more steps...
Step 7.2.2.1
Cancel the common factor of ex.
Tap for more steps...
Step 7.2.2.1.1
Cancel the common factor.
exyex=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.2.1.2
Divide y by 1.
y=exsin(x)2ex+-excos(x)2ex+Cex
y=exsin(x)2ex+-excos(x)2ex+Cex
y=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.3
Simplify the right side.
Tap for more steps...
Step 7.2.3.1
Simplify each term.
Tap for more steps...
Step 7.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
y=exsin(x)21ex+-excos(x)2ex+Cex
Step 7.2.3.1.2
Combine.
y=exsin(x)12ex+-excos(x)2ex+Cex
Step 7.2.3.1.3
Cancel the common factor of ex.
Tap for more steps...
Step 7.2.3.1.3.1
Cancel the common factor.
y=exsin(x)12ex+-excos(x)2ex+Cex
Step 7.2.3.1.3.2
Rewrite the expression.
y=sin(x)12+-excos(x)2ex+Cex
y=sin(x)12+-excos(x)2ex+Cex
Step 7.2.3.1.4
Multiply sin(x) by 1.
y=sin(x)2+-excos(x)2ex+Cex
Step 7.2.3.1.5
Multiply the numerator by the reciprocal of the denominator.
y=sin(x)2-excos(x)21ex+Cex
Step 7.2.3.1.6
Cancel the common factor of ex.
Tap for more steps...
Step 7.2.3.1.6.1
Move the leading negative in -excos(x)2 into the numerator.
y=sin(x)2+-excos(x)21ex+Cex
Step 7.2.3.1.6.2
Factor ex out of -excos(x).
y=sin(x)2+ex(-1cos(x))21ex+Cex
Step 7.2.3.1.6.3
Cancel the common factor.
y=sin(x)2+ex(-1cos(x))21ex+Cex
Step 7.2.3.1.6.4
Rewrite the expression.
y=sin(x)2+-1cos(x)2+Cex
y=sin(x)2+-1cos(x)2+Cex
Step 7.2.3.1.7
Move the negative in front of the fraction.
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
Enter YOUR Problem
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay