Calculus Examples
dydx+y=sin(x)dydx+y=sin(x)
Step 1
Step 1.1
Set up the integration.
e∫dx
Step 1.2
Apply the constant rule.
ex+C
Step 1.3
Remove the constant of integration.
ex
ex
Step 2
Step 2.1
Multiply each term by ex.
exdydx+exy=exsin(x)
Step 2.2
Reorder factors in exdydx+exy=exsin(x).
exdydx+yex=exsin(x)
exdydx+yex=exsin(x)
Step 3
Rewrite the left side as a result of differentiating a product.
ddx[exy]=exsin(x)
Step 4
Set up an integral on each side.
∫ddx[exy]dx=∫exsin(x)dx
Step 5
Integrate the left side.
exy=∫exsin(x)dx
Step 6
Step 6.1
Reorder ex and sin(x).
exy=∫sin(x)exdx
Step 6.2
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=sin(x) and dv=ex.
exy=sin(x)ex-∫excos(x)dx
Step 6.3
Reorder ex and cos(x).
exy=sin(x)ex-∫cos(x)exdx
Step 6.4
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=cos(x) and dv=ex.
exy=sin(x)ex-(cos(x)ex-∫ex(-sin(x))dx)
Step 6.5
Since -1 is constant with respect to x, move -1 out of the integral.
exy=sin(x)ex-(cos(x)ex--∫ex(sin(x))dx)
Step 6.6
Simplify by multiplying through.
Step 6.6.1
Multiply -1 by -1.
exy=sin(x)ex-(cos(x)ex+1∫ex(sin(x))dx)
Step 6.6.2
Multiply ∫ex(sin(x))dx by 1.
exy=sin(x)ex-(cos(x)ex+∫ex(sin(x))dx)
Step 6.6.3
Apply the distributive property.
exy=sin(x)ex-(cos(x)ex)-∫ex(sin(x))dx
exy=sin(x)ex-(cos(x)ex)-∫ex(sin(x))dx
Step 6.7
Solving for ∫exsin(x)dx, we find that ∫exsin(x)dx = sin(x)ex-(cos(x)ex)2.
exy=sin(x)ex-(cos(x)ex)2+C
Step 6.8
Rewrite sin(x)ex-cos(x)ex2+C as 12(sin(x)ex-cos(x)ex)+C.
exy=12(sin(x)ex-cos(x)ex)+C
exy=12(sin(x)ex-cos(x)ex)+C
Step 7
Step 7.1
Simplify.
Step 7.1.1
Apply the distributive property.
exy=12(sin(x)ex)+12(-cos(x)ex)+C
Step 7.1.2
Multiply 12(sin(x)ex).
Step 7.1.2.1
Combine sin(x) and 12.
exy=sin(x)2ex+12(-cos(x)ex)+C
Step 7.1.2.2
Combine sin(x)2 and ex.
exy=sin(x)ex2+12(-cos(x)ex)+C
exy=sin(x)ex2+12(-cos(x)ex)+C
Step 7.1.3
Multiply 12(-cos(x)ex).
Step 7.1.3.1
Combine 12 and cos(x).
exy=sin(x)ex2-cos(x)2ex+C
Step 7.1.3.2
Combine ex and cos(x)2.
exy=sin(x)ex2-excos(x)2+C
exy=sin(x)ex2-excos(x)2+C
Step 7.1.4
Reorder factors in sin(x)ex2-excos(x)2.
exy=exsin(x)2-excos(x)2+C
exy=exsin(x)2-excos(x)2+C
Step 7.2
Divide each term in exy=exsin(x)2-excos(x)2+C by ex and simplify.
Step 7.2.1
Divide each term in exy=exsin(x)2-excos(x)2+C by ex.
exyex=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.2
Simplify the left side.
Step 7.2.2.1
Cancel the common factor of ex.
Step 7.2.2.1.1
Cancel the common factor.
exyex=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.2.1.2
Divide y by 1.
y=exsin(x)2ex+-excos(x)2ex+Cex
y=exsin(x)2ex+-excos(x)2ex+Cex
y=exsin(x)2ex+-excos(x)2ex+Cex
Step 7.2.3
Simplify the right side.
Step 7.2.3.1
Simplify each term.
Step 7.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
y=exsin(x)2⋅1ex+-excos(x)2ex+Cex
Step 7.2.3.1.2
Combine.
y=exsin(x)⋅12ex+-excos(x)2ex+Cex
Step 7.2.3.1.3
Cancel the common factor of ex.
Step 7.2.3.1.3.1
Cancel the common factor.
y=exsin(x)⋅12ex+-excos(x)2ex+Cex
Step 7.2.3.1.3.2
Rewrite the expression.
y=sin(x)⋅12+-excos(x)2ex+Cex
y=sin(x)⋅12+-excos(x)2ex+Cex
Step 7.2.3.1.4
Multiply sin(x) by 1.
y=sin(x)2+-excos(x)2ex+Cex
Step 7.2.3.1.5
Multiply the numerator by the reciprocal of the denominator.
y=sin(x)2-excos(x)2⋅1ex+Cex
Step 7.2.3.1.6
Cancel the common factor of ex.
Step 7.2.3.1.6.1
Move the leading negative in -excos(x)2 into the numerator.
y=sin(x)2+-excos(x)2⋅1ex+Cex
Step 7.2.3.1.6.2
Factor ex out of -excos(x).
y=sin(x)2+ex(-1cos(x))2⋅1ex+Cex
Step 7.2.3.1.6.3
Cancel the common factor.
y=sin(x)2+ex(-1cos(x))2⋅1ex+Cex
Step 7.2.3.1.6.4
Rewrite the expression.
y=sin(x)2+-1cos(x)2+Cex
y=sin(x)2+-1cos(x)2+Cex
Step 7.2.3.1.7
Move the negative in front of the fraction.
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex
y=sin(x)2-cos(x)2+Cex