Calculus Examples

Solve the Differential Equation
Step 1
Rewrite the differential equation as a function of .
Tap for more steps...
Step 1.1
Assume .
Step 1.2
Combine and into a single radical.
Step 1.3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.3.1
Factor out of .
Step 1.3.2
Factor out of .
Step 1.3.3
Cancel the common factor.
Step 1.3.4
Rewrite the expression.
Step 2
Let . Substitute for .
Step 3
Solve for .
Step 4
Use the product rule to find the derivative of with respect to .
Step 5
Substitute for .
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Separate the variables.
Tap for more steps...
Step 6.1.1
Solve for .
Tap for more steps...
Step 6.1.1.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 6.1.1.1.1
Subtract from both sides of the equation.
Step 6.1.1.1.2
Combine the opposite terms in .
Tap for more steps...
Step 6.1.1.1.2.1
Subtract from .
Step 6.1.1.1.2.2
Add and .
Step 6.1.1.2
Divide each term in by and simplify.
Tap for more steps...
Step 6.1.1.2.1
Divide each term in by .
Step 6.1.1.2.2
Simplify the left side.
Tap for more steps...
Step 6.1.1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.1.1.2.2.1.1
Cancel the common factor.
Step 6.1.1.2.2.1.2
Divide by .
Step 6.1.2
Multiply both sides by .
Step 6.1.3
Cancel the common factor of .
Tap for more steps...
Step 6.1.3.1
Cancel the common factor.
Step 6.1.3.2
Rewrite the expression.
Step 6.1.4
Rewrite the equation.
Step 6.2
Integrate both sides.
Tap for more steps...
Step 6.2.1
Set up an integral on each side.
Step 6.2.2
Integrate the left side.
Tap for more steps...
Step 6.2.2.1
Apply basic rules of exponents.
Tap for more steps...
Step 6.2.2.1.1
Use to rewrite as .
Step 6.2.2.1.2
Move out of the denominator by raising it to the power.
Step 6.2.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 6.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 6.2.2.1.3.2
Combine and .
Step 6.2.2.1.3.3
Move the negative in front of the fraction.
Step 6.2.2.2
By the Power Rule, the integral of with respect to is .
Step 6.2.3
The integral of with respect to is .
Step 6.2.4
Group the constant of integration on the right side as .
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.1.1
Divide each term in by .
Step 6.3.1.2
Simplify the left side.
Tap for more steps...
Step 6.3.1.2.1
Cancel the common factor.
Step 6.3.1.2.2
Divide by .
Step 6.3.1.3
Simplify the right side.
Tap for more steps...
Step 6.3.1.3.1
Simplify each term.
Tap for more steps...
Step 6.3.1.3.1.1
Rewrite as .
Step 6.3.1.3.1.2
Simplify by moving inside the logarithm.
Step 6.3.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 6.3.3
Simplify the left side.
Tap for more steps...
Step 6.3.3.1
Simplify .
Tap for more steps...
Step 6.3.3.1.1
Multiply the exponents in .
Tap for more steps...
Step 6.3.3.1.1.1
Apply the power rule and multiply exponents, .
Step 6.3.3.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 6.3.3.1.1.2.1
Cancel the common factor.
Step 6.3.3.1.1.2.2
Rewrite the expression.
Step 6.3.3.1.2
Simplify.
Step 6.4
Simplify the constant of integration.
Step 7
Substitute for .
Step 8
Solve for .
Tap for more steps...
Step 8.1
Multiply both sides by .
Step 8.2
Simplify.
Tap for more steps...
Step 8.2.1
Simplify the left side.
Tap for more steps...
Step 8.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1.1
Cancel the common factor.
Step 8.2.1.1.2
Rewrite the expression.
Step 8.2.2
Simplify the right side.
Tap for more steps...
Step 8.2.2.1
Reorder factors in .
Enter YOUR Problem
Mathway requires javascript and a modern browser.